A Binary differential search algorithm for the 0-1 multidimensional knapsack problem

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[3]  A. Frieze,et al.  Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .

[4]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[5]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[6]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[7]  Masatoshi Sakawa,et al.  Genetic algorithms with double strings for 0-1 programming problems , 2003, Eur. J. Oper. Res..

[8]  Michel Vasquez,et al.  Improved results on the 0-1 multidimensional knapsack problem , 2005, Eur. J. Oper. Res..

[9]  Fan Zhang,et al.  Some new results on multi-dimension Knapsack problem , 2005 .

[10]  Lingfeng Wang,et al.  Unit commitment considering generator outages through a mixed-integer particle swarm optimization algorithm , 2006, 2006 IEEE Region 5 Conference.

[11]  S. Salhi,et al.  A survey of effective heuristics and their application to a variety of knapsack problems , 2007 .

[12]  Xiaoling Sun,et al.  An exact algorithm for 0-1 polynomial knapsack problems , 2007 .

[13]  Dirk P. Kroese,et al.  An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting , 2008 .

[14]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[15]  Rumen Andonov,et al.  A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem , 2008, Eur. J. Oper. Res..

[16]  Nikitas J. Dimopoulos,et al.  Resource allocation on computational grids using a utility model and the knapsack problem , 2009, Future Gener. Comput. Syst..

[17]  Jacek Blazewicz,et al.  The Knapsack-Lightening problem and its application to scheduling HRT tasks , 2009 .

[18]  James A. R. Marshall,et al.  Swarm Cognition: an interdisciplinary approach to the study of self-organising biological collectives , 2011, Swarm Intelligence.

[19]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[20]  André Rossi,et al.  An Artificial Bee Colony Algorithm for the 0-1 Multidimensional Knapsack Problem , 2010, IC3.

[21]  Lei Fang,et al.  A Quantum-Inspired Artificial Immune System for Multiobjective 0-1 Knapsack Problems , 2010, ISNN.

[22]  Philippe Michelon,et al.  A multi-level search strategy for the 0-1 Multidimensional Knapsack Problem , 2010, Discret. Appl. Math..

[23]  Didier El Baz,et al.  A dynamic programming method with lists for the knapsack sharing problem , 2011, Comput. Ind. Eng..

[24]  Yongquan Zhou,et al.  Hybrid Artificial Glowworm Swarm Optimization Algorithm for Solving Multi-dimensional Knapsack Problem , 2011 .

[25]  Kusum Deep,et al.  A Modified Binary Particle Swarm Optimization for Knapsack Problems , 2012, Appl. Math. Comput..

[26]  M. Jalali Varnamkhasti,et al.  Overview of the Algorithms for Solving the Multidimensional Knapsack Problems , 2012 .

[27]  Pinar Civicioglu,et al.  Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm , 2012, Comput. Geosci..

[28]  Narayana Prasad Padhy,et al.  Binary real coded firefly algorithm for solving unit commitment problem , 2013, Inf. Sci..

[29]  Wenxun Xing,et al.  A conic approximation method for the 0-1 quadratic knapsack problem , 2013 .

[30]  Rajat Kumar Pal,et al.  An Ant colony optimization approach for binary knapsack problem under fuzziness , 2013, Appl. Math. Comput..

[31]  Xin-She Yang,et al.  Firefly Algorithm: Recent Advances and Applications , 2013, ArXiv.

[32]  Sankaran Mahadevan,et al.  Solving 0-1 knapsack problems based on amoeboid organism algorithm , 2013, Appl. Math. Comput..

[33]  Changzhi Wu,et al.  A DC PROGRAMMING APPROACH FOR SENSOR NETWORK LOCALIZATION WITH UNCERTAINTIES IN ANCHOR POSITIONS , 2013 .

[34]  Shengyao Wang,et al.  A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem , 2013, Knowl. Based Syst..

[35]  Ana Maria A. C. Rocha,et al.  A simplified binary artificial fish swarm algorithm for 0-1 quadratic knapsack problems , 2014, J. Comput. Appl. Math..

[36]  Maw-Sheng Chern,et al.  Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem , 2014 .

[37]  Xiangyu Wang,et al.  Optimizations in Project Scheduling: A State-of-Art Survey , 2014 .

[38]  Ana Maria A. C. Rocha,et al.  Improved binary artificial fish swarm algorithm for the 0-1 multidimensional knapsack problems , 2014, Swarm Evol. Comput..

[39]  Jiaquan Gao,et al.  A quantum-inspired artificial immune system for the multiobjective 0-1 knapsack problem , 2014, Appl. Math. Comput..

[40]  Changzhi Wu,et al.  A Hybrid Method Combining Genetic Algorithm and Hooke-Jeeves Method for Constrained Global Optimization , 2014 .

[41]  Adil Baykasoglu,et al.  An improved firefly algorithm for solving dynamic multidimensional knapsack problems , 2014, Expert Syst. Appl..

[42]  Sarada Prasad Sarmah,et al.  Shuffled frog leaping algorithm and its application to 0/1 knapsack problem , 2014, Appl. Soft Comput..

[43]  Xiangyu Wang,et al.  A genetic algorithm for unconstrained multi-objective optimization , 2015, Swarm Evol. Comput..

[44]  Xiangyu Wang,et al.  A novel differential search algorithm and applications for structure design , 2015, Appl. Math. Comput..

[45]  Mingchang Chih,et al.  Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem , 2015, Appl. Soft Comput..

[46]  Qiang Ma,et al.  An Artificial Bee Colony algorithm with guide of global & local optima and asynchronous scaling factors for numerical optimization , 2015, Appl. Soft Comput..

[47]  Kok Lay Teo,et al.  An exact penalty function-based differential search algorithm for constrained global optimization , 2015, Soft Computing.