Core-envelope and regular models in Einstein-Maxwell fields

[1]  S. Maharaj,et al.  New models for perfect fluids in EGB gravity , 2015 .

[2]  S. Maharaj,et al.  Exact barotropic distributions in Einstein-Gauss-Bonnet gravity , 2015, 1512.08972.

[3]  S. Maharaj,et al.  Exact EGB models for spherical static perfect fluids , 2015, 1502.02219.

[4]  Howard Isaacson,et al.  Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars , 2014, Proceedings of the National Academy of Sciences.

[5]  S. Maharaj,et al.  Generating Interior Sources for the Reissner-Nordström Metric , 2014 .

[6]  J. Krisch,et al.  Two fluid shear-free composites , 2013, 1307.1080.

[7]  S. Hansraj,et al.  ALGORITHMIC CONSTRUCTION OF EXACT SOLUTIONS FOR NEUTRAL STATIC PERFECT FLUID SPHERES , 2013 .

[8]  Kanti R. Jotania,et al.  A relativistic two-parameter core-envelope model of compact stars , 2009 .

[9]  S. Maharaj,et al.  Charged relativistic spheres with generalized potentials , 2009, 0904.0781.

[10]  N. Chamel Two-fluid models of superfluid neutron star cores , 2008, 0805.1007.

[11]  S. Maharaj,et al.  Generalized compact spheres in electric fields , 2007, 0708.3325.

[12]  S. Maharaj,et al.  Charged analogue of Finch-Skea stars , 2006, gr-qc/0605070.

[13]  Y. K. Gupta,et al.  A superdense star model as charged analogue of Schwarzschild’s interior solution , 2005 .

[14]  M. Visser,et al.  Generating perfect fluid spheres in general relativity , 2005, gr-qc/0503007.

[15]  V. O. Thomas,et al.  A relativistic core-envelope model on pseudospheroidal space-time , 2005 .

[16]  M. Visser,et al.  Algorithmic construction of static perfect fluid spheres , 2003, gr-qc/0306109.

[17]  K. Lake All static spherically symmetric perfect-fluid solutions of Einstein’s equations , 2002, gr-qc/0209104.

[18]  Ranjan Sharma,et al.  COMPACT STARS: A CORE-ENVELOPE MODEL , 2002 .

[19]  B. Ivanov Static charged perfect fluid spheres in general relativity , 2002 .

[20]  C. Uggla,et al.  General Relativistic Stars: Linear Equations of State , 2000, gr-qc/0002021.

[21]  C. Uggla,et al.  General Relativistic Stars : Polytropic Equations of State , 2000, gr-qc/0002022.

[22]  Susan Elizabeth Gunter Ponce de Leon , 1996 .

[23]  A. Coley,et al.  Spacetimes admitting inheriting conformal Killing vector fields , 1990 .

[24]  R. Maartens,et al.  Anisotropic spheres with uniform energy density in general relativity , 1989 .

[25]  J. Skea,et al.  A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .

[26]  L. Herrera,et al.  Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions , 1985 .

[27]  M. C. Durgapal,et al.  Analytic relativistic model for a superdense star , 1985 .

[28]  R. Tikekar Spherical charged fluid distributions in general relativity , 1984 .

[29]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[30]  M. C. Durgapal,et al.  New analytical stellar model in general relativity , 1983 .

[31]  P. Whitman,et al.  Charged spheres in general relativity , 1981 .

[32]  A. Banerjee,et al.  Static charged perfect fluid in a conformally flat spacetime , 1981 .

[33]  A. Sah,et al.  Charged fluid sphere in general relativity , 1979 .

[34]  J. Walecka Equation of state for neutron matter at finite T in a relativistic mean-field theory☆ , 1975 .

[35]  W. Bonnor,et al.  Are Very Large Gravitational Redshifts Possible , 1975 .

[36]  H. Buchdahl Conformal Flatness of the Schwarzschild Interior Solution , 1971 .

[37]  A. Raychaudhuri,et al.  Static distribution of charged dust in general relativity , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  W. Bonnor The Equilibrium of a Charged Sphere , 1965 .

[39]  VICTOR T. TOMBERG Non-thermal Biological Effects of Laser Beams , 1964, Nature.

[40]  W. Bonnor The mass of a static charged sphere , 1960 .

[41]  M. Wyman Radially Symmetric Distributions of Matter , 1949 .