Core-envelope and regular models in Einstein-Maxwell fields
暂无分享,去创建一个
[1] S. Maharaj,et al. New models for perfect fluids in EGB gravity , 2015 .
[2] S. Maharaj,et al. Exact barotropic distributions in Einstein-Gauss-Bonnet gravity , 2015, 1512.08972.
[3] S. Maharaj,et al. Exact EGB models for spherical static perfect fluids , 2015, 1502.02219.
[4] Howard Isaacson,et al. Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars , 2014, Proceedings of the National Academy of Sciences.
[5] S. Maharaj,et al. Generating Interior Sources for the Reissner-Nordström Metric , 2014 .
[6] J. Krisch,et al. Two fluid shear-free composites , 2013, 1307.1080.
[7] S. Hansraj,et al. ALGORITHMIC CONSTRUCTION OF EXACT SOLUTIONS FOR NEUTRAL STATIC PERFECT FLUID SPHERES , 2013 .
[8] Kanti R. Jotania,et al. A relativistic two-parameter core-envelope model of compact stars , 2009 .
[9] S. Maharaj,et al. Charged relativistic spheres with generalized potentials , 2009, 0904.0781.
[10] N. Chamel. Two-fluid models of superfluid neutron star cores , 2008, 0805.1007.
[11] S. Maharaj,et al. Generalized compact spheres in electric fields , 2007, 0708.3325.
[12] S. Maharaj,et al. Charged analogue of Finch-Skea stars , 2006, gr-qc/0605070.
[13] Y. K. Gupta,et al. A superdense star model as charged analogue of Schwarzschild’s interior solution , 2005 .
[14] M. Visser,et al. Generating perfect fluid spheres in general relativity , 2005, gr-qc/0503007.
[15] V. O. Thomas,et al. A relativistic core-envelope model on pseudospheroidal space-time , 2005 .
[16] M. Visser,et al. Algorithmic construction of static perfect fluid spheres , 2003, gr-qc/0306109.
[17] K. Lake. All static spherically symmetric perfect-fluid solutions of Einstein’s equations , 2002, gr-qc/0209104.
[18] Ranjan Sharma,et al. COMPACT STARS: A CORE-ENVELOPE MODEL , 2002 .
[19] B. Ivanov. Static charged perfect fluid spheres in general relativity , 2002 .
[20] C. Uggla,et al. General Relativistic Stars: Linear Equations of State , 2000, gr-qc/0002021.
[21] C. Uggla,et al. General Relativistic Stars : Polytropic Equations of State , 2000, gr-qc/0002022.
[22] Susan Elizabeth Gunter. Ponce de Leon , 1996 .
[23] A. Coley,et al. Spacetimes admitting inheriting conformal Killing vector fields , 1990 .
[24] R. Maartens,et al. Anisotropic spheres with uniform energy density in general relativity , 1989 .
[25] J. Skea,et al. A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .
[26] L. Herrera,et al. Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions , 1985 .
[27] M. C. Durgapal,et al. Analytic relativistic model for a superdense star , 1985 .
[28] R. Tikekar. Spherical charged fluid distributions in general relativity , 1984 .
[29] Saul A. Teukolsky,et al. Black Holes, White Dwarfs, and Neutron Stars , 1983 .
[30] M. C. Durgapal,et al. New analytical stellar model in general relativity , 1983 .
[31] P. Whitman,et al. Charged spheres in general relativity , 1981 .
[32] A. Banerjee,et al. Static charged perfect fluid in a conformally flat spacetime , 1981 .
[33] A. Sah,et al. Charged fluid sphere in general relativity , 1979 .
[34] J. Walecka. Equation of state for neutron matter at finite T in a relativistic mean-field theory☆ , 1975 .
[35] W. Bonnor,et al. Are Very Large Gravitational Redshifts Possible , 1975 .
[36] H. Buchdahl. Conformal Flatness of the Schwarzschild Interior Solution , 1971 .
[37] A. Raychaudhuri,et al. Static distribution of charged dust in general relativity , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[38] W. Bonnor. The Equilibrium of a Charged Sphere , 1965 .
[39] VICTOR T. TOMBERG. Non-thermal Biological Effects of Laser Beams , 1964, Nature.
[40] W. Bonnor. The mass of a static charged sphere , 1960 .
[41] M. Wyman. Radially Symmetric Distributions of Matter , 1949 .