Real-space imaging of atomic arrangement and vacancy layers ordering in laser crystallised Ge2Sb2Te5 phase change thin films

Abstract In this work, the local structure of metastable Ge 2 Sb 2 Te 5 (GST) phase change thin films crystallised by laser irradiation of amorphous GST films is studied by state-of-the-art aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM). By analysing simulated and experimental atomic-resolution Cs-corrected STEM images, a structure model for metastable GST is proposed. The GST lattice is described by a distorted rock-salt like structure with an ordered Te sublattice at the 4(a) site and a disordered sublattice of Ge, Sb and vacancies at the 4(b) site, where only a distorted octahedral atomic arrangement of Ge and Sb atoms exists without layered ordering of intrinsic vacancies. Additionally, no evidence for the presence of either tetrahedral Ge atoms in the GST lattice or an amorphous component at the grain boundaries is found. Moreover, a formation of vacancy layers in metastable GST in direction under the influence of focused electron beam irradiation is observed. These vacancy layers vanish during repeated scanning of the electron beam over these defects. The gained outcomes of this study shed new insight into understanding the atomic arrangement and phase change mechanism in GST thin films as well as the control of disorder in phase change materials.

[1]  Jun Takeda,et al.  Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy , 2014 .

[2]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[3]  Eiji Abe,et al.  Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. , 2011, Nature materials.

[4]  Rajeev Ahuja,et al.  Structure of phase change materials for data storage. , 2006, Physical review letters.

[5]  Lewys Jones,et al.  Identifying and Correcting Scan Noise and Drift in the Scanning Transmission Electron Microscope , 2013, Microscopy and Microanalysis.

[6]  Atomistic origins of the phase transition mechanism in Ge2Sb2Te5 , 2009, 0903.2456.

[7]  Jagan Singh Meena,et al.  Overview of emerging nonvolatile memory technologies , 2014, Nanoscale Research Letters.

[8]  $\hbox{Ge}_{2}\hbox{Sb}_{2}\hbox{Te}_{5}$ as a Ferroelectric: A Single-Element Low-Voltage Dynamic Memory , 2012, IEEE Electron Device Letters.

[9]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[10]  Stanford R. Ovshinsky,et al.  Rapid Reversible Light-Induced Crystallization of Amorphous Semiconductors , 1971 .

[11]  N. Yamada,et al.  Crystalline GeTe-based phase-change alloys: Disorder in order , 2012 .

[12]  A. Walsh,et al.  Insights into the structure of the stable and metastable ( GeTe ) m ( Sb 2 Te 3 ) n compounds , 2009 .

[13]  K. Kimoto,et al.  Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. , 2010, Ultramicroscopy.

[14]  A. Lotnyk,et al.  Direct imaging of light elements by annular dark-field aberration-corrected scanning transmission electron microscopy , 2014 .

[15]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[16]  C. Jia,et al.  Atomic-Resolution Measurement of Oxygen Concentration in Oxide Materials , 2004, Science.

[17]  Kazuo Ishizuka,et al.  Local crystal structure analysis with 10-pm accuracy using scanning transmission electron microscopy. , 2009, Journal of electron microscopy.

[18]  P Jost,et al.  Disorder-induced localization in crystalline phase-change materials. , 2011, Nature materials.

[19]  Noboru Yamada,et al.  Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory , 2000 .

[20]  N. Sun,et al.  Transmission electron microscopy study of amorphous Ge2Sb2Te5 films induced by an ultraviolet single-pulse laser , 2014 .

[21]  Investigation of the structural transformation behavior of Ge2Sb2Te5 thin films using high resolution electron microscopy , 2007 .

[22]  H. Lee,et al.  Crystal structure and atomic arrangement of the metastable Ge2Sb2Te5 thin films deposited on SiO2∕Si substrates by sputtering method , 2005 .

[23]  J. Tominaga,et al.  Existence of tetrahedral site symmetry about Ge atoms in a single-crystal film of Ge2Sb2Te5 found by x-ray fluorescence holography , 2007 .

[24]  P. Nellist,et al.  On the origin of transverse incoherence in Z-contrast STEM. , 2001, Journal of electron microscopy.

[25]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[26]  J Ringnalda,et al.  Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. , 2005, Ultramicroscopy.

[27]  D. Muller,et al.  Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. , 2001, Journal of electron microscopy.

[28]  M. Ishimaru,et al.  Local structure analysis of Ge-Sb-Te phase change materials using high-resolution electron microscopy and nanobeam diffraction , 2004 .

[29]  A. Lotnyk,et al.  Microstructure of porous gallium nitride nanowall networks , 2014 .

[30]  N. Yamada,et al.  Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems. , 2004, Acta crystallographica. Section B, Structural science.

[31]  J. González-Hernández,et al.  Ferroelectric properties of Ge2Sb2Te5 phase-change films , 2010 .

[32]  Wei Zhang,et al.  Martensitic Transformation in Ge2Sb2Te5 Alloy , 2008 .

[33]  L. Erra,et al.  Temperature dependent resonant X-ray diffraction of single-crystalline Ge2Sb2Te5 , 2013 .

[34]  Wei Zhang,et al.  Role of vacancies in metal-insulator transitions of crystalline phase-change materials. , 2012, Nature materials.

[35]  K. Ishizuka,et al.  A practical approach for STEM image simulation based on the FFT multislice method. , 2002, Ultramicroscopy.

[36]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[37]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[38]  D. Ielmini,et al.  Phase change materials and their application to nonvolatile memories. , 2010, Chemical reviews.

[39]  E. Ma,et al.  Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. , 2009, Physical review letters.

[40]  M. Parrinello,et al.  Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials , 2007, 0708.1302.

[41]  S. Zhang,et al.  New structural picture of the Ge2Sb2Te5 phase-change alloy. , 2011, Physical review letters.

[42]  Andriy Lotnyk,et al.  Focused high- and low-energy ion milling for TEM specimen preparation , 2015, Microelectron. Reliab..

[43]  A. Lotnyk,et al.  An aberration-corrected STEM study of structural defects in epitaxial GaN thin films grown by ion beam assisted MBE. , 2015, Micron.

[44]  In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 , 2004 .

[45]  Crystallization of amorphous Ge2Sb2Te5 films induced by a single femtosecond laser pulse , 2005 .

[46]  S. Pennycook,et al.  New views of materials through aberration-corrected scanning transmission electron microscopy. , 2011, Journal of electron microscopy.

[47]  Naoya Shibata,et al.  Robust atomic resolution imaging of light elements using scanning transmission electron microscopy , 2009 .

[48]  T Uruga,et al.  Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. , 2011, Nature chemistry.

[49]  A. Lotnyk,et al.  Direct imaging of crystal structure and defects in metastable Ge2Sb2Te5 by quantitative aberration-corrected scanning transmission electron microscopy , 2014 .

[50]  Valerio Pruneri,et al.  Time-domain separation of optical properties from structural transitions in resonantly bonded materials. , 2014, Nature materials.

[51]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .