Single-mode systems and components for longer wavelengths (Invited Paper)

Single-mode optical fiber transmission technology in the 1.0-1.8-{\mu} m wavelength region is reviewed. Owing to low fiber loss in the spectral region and to wide-band single-mode fiber characteristics, longwavelength single-mode fiber transmission systems are capable of high data-rate transmission over tens of kilometers distance without intermediate repeaters. The advantages of the systems and progress in fibers, fiber splicing, and devices are reviewed in detail. Using low-loss fibers and recently developed semiconductor lasers, transmission performance is confirmed at 1.05, 1.1, and 1.5 \mu m wavelengths. At 1.3 {\mu} m, where fiber dispersion almost vanishes, gigabit-per-second pulse signals are successfully transmitted over 20 km without intersymbol interference. The maximum tested data rate is 1.6 Gbit/s, at which 13-km nonrepeatered transmission is confirmed. At 1.5 {\mu} m, where ultimate low-loss characteristics are expected in silica fibers, 100 Mbit/s transmission is successfully demonstrated over a 29-km repeater span. These high data-rate transmission capabilities over long fiber spans are attractive for future communications networks which may provide a variety of services at reduced system cost and with improved maintenance and installation convenience.

[1]  F. Kapron,et al.  RADIATION LOSSES IN GLASS OPTICAL WAVEGUIDES , 1970 .

[2]  T. Kimura,et al.  Bending loss of propagation modes in arbitrary-index profile optical fibers. , 1978, Applied optics.

[3]  Y. Suematsu,et al.  In 1-x Ga x As y P 1-y /InP DH lasers fabricated on InP , 1978 .

[4]  Susumu Machida,et al.  Interference of an AlGaAs laser diode using a 4.15 km single mode fiber cable , 1979 .

[5]  T. Kimura,et al.  Practical microbending loss formula for single-mode optical fibers , 1979 .

[6]  David N. Payne,et al.  Determination of the wavelength of zero material dispersion in optical fibres by pulse-delay measurements , 1977 .

[7]  A. Snyder,et al.  Radiation from bent optical waveguides , 1975 .

[8]  T. Miya,et al.  Ultimate low-loss single-mode fibre at 1.55 μm , 1979 .

[9]  T Kimura,et al.  Splicing and bending losses of single-mode optical fibers. , 1978, Applied optics.

[10]  Hidetoshi Iwamura,et al.  Compact optical isolator for near-infrared radiation , 1977 .

[11]  H. Ando,et al.  Characteristics of germanium avalanche photodiodes in the wavelength region of 1-1.6 µm , 1978, IEEE Journal of Quantum Electronics.

[12]  H. Wieder,et al.  Quaternary alloy InxGa1−xAsyP1−y/InP photodetectors , 1978 .

[13]  K. Kao,et al.  Dielectric-fibre surface waveguides for optical frequencies , 1966 .

[14]  J. J. Hsieh,et al.  1000-Hour Continuous CW Operation Of Double-Heterostructure GaInAsP/Inp Lasers , 1977 .

[15]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[16]  Thomas P. Pearsall,et al.  The Ga0.47In0.53As homojunction photodiode—A new avalanche photodetector in the near infrared between 1.0 and 1.6 μm , 1978 .

[17]  H. Melchior,et al.  Signal and noise response of high speed germanium avalanche photodiodes , 1966 .

[18]  A Sugimura,et al.  Wavelength dispersion of optical fibers directly measured by ''difference method'' in the 0.8-1.6 microm range. , 1979, The Review of scientific instruments.

[19]  N. Kobayashi,et al.  1.5 µm InGaAsP/InP DH Laser with Optical Waveguide Structure , 1979 .

[20]  Masao Tachikura,et al.  Mechanical strength of fusion-spliced optical fibres , 1978 .

[21]  Kazuo Nakajima,et al.  Impact ionisation ratio in In0.73Ga0.27As0.57P0.43 , 1978 .

[22]  Tingye Li,et al.  Research toward optical-fiber transmission systems , 1973 .

[23]  Shoichi Saito,et al.  Temperature stabilized optical waveguide modulator , 1978 .

[24]  N. Susa,et al.  Planar photodiodes made from vapour-phase epitaxial InxGa1-xAs , 1979 .

[25]  Y. Takanashi,et al.  InGaAsP/InP Avalanche Photodiode , 1978 .

[26]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[27]  I Hatakeyama,et al.  Fusion splices for optical fibers by discharge heating. , 1978, Applied optics.

[28]  K. Nakagawa,et al.  Non-repeatered 50 km transmission experiment using low-loss optical fibres , 1978 .

[29]  Nobuo Shimizu,et al.  Low-loss single-mode fibre connectors , 1979 .

[30]  Koichi Asatani,et al.  Pulse broadening in long-span single-mode fibers around a material-dispersion-free wavelength. , 1978, Optics letters.

[31]  K. Oe,et al.  1.3 µm CW Operation of GaInAsP/InP DH Diode Lasers at Room Temperature , 1977 .

[32]  T. Okoshi,et al.  Refractive-index profile of an optical fiber: its measurement by the scattering-pattern method. , 1976, Applied optics.

[33]  Iwao Hatakeyama,et al.  Fusion splices for single-mode optical fibers (A) , 1978 .

[34]  M. Saruwatari,et al.  Low loss fibre transmission of high speed pulse signals at 1.29 μm wavelength , 1978 .

[35]  H. Nakagome,et al.  Double eccentric connectors for optical fibers. , 1977, Applied optics.

[36]  M. Saruwatari,et al.  Fluorescence and oscillation characteristics of LiNdP 4 O 12 lasers at 1.317 µm , 1977 .

[37]  F. Capasso,et al.  Observation of Electronic Band-Structure Effects on Impact Ionization by Temperature Tuning , 1977 .

[38]  M. Horiguchi,et al.  Spectral losses of low-OH-content optical fibres , 1976 .

[39]  M. Umeno,et al.  InGaAsP/InP Double-Heterostructure Photodiodes , 1978 .

[40]  Masao Kawachi,et al.  Low-Loss single-mode fibre at the material-dispersion-free wavelength of 1.27 μm , 1977 .

[41]  R. Dixon,et al.  Continuous operation of 1.0‐μm‐wavelength GaAs1−xSbx/AlyGa1−yAs1−xSbx double‐heterostructure injection lasers at room temperature , 1976 .

[42]  K. Otsuka Observations of spontaneous phase locking of LiNdP 4 O 12 lasers , 1978 .

[43]  W. B. Gardner Microbending loss in optical fibers , 1975, The Bell System Technical Journal.

[44]  A. G. Dentai,et al.  Nd:YAG single‐crystal fiber laser: Room‐temperature cw operation using a single LED as an end pump , 1976 .

[45]  M. Saruwatari,et al.  Spectroscopy and laser oscillation properties of lithium neodymium tetraphosphate , 1975 .

[46]  T. Izawa,et al.  Effect of dopants on transmission loss of low-OH-content optical fibres , 1976 .

[47]  Thomas P. Pearsall,et al.  The band structure dependence of impact ionization by hot carriers in semiconductors: GaAs , 1978 .

[48]  J. Conradi,et al.  Fiber-optical transmission between 0.8 and 1.4 µm , 1978, IEEE Transactions on Electron Devices.

[49]  H. G. Danielmeyer,et al.  Fluorescence in neodymium ultraphosphate , 1972 .

[50]  E. Kuester,et al.  Surface-wave radiation loss from curved dielectric slabs and fibers , 1975 .

[51]  M. Saruwatari,et al.  Miniaturized cw LiNdP4O12 laser pumped with a semiconductor laser , 1976 .

[52]  J. Chelikowsky,et al.  Orientation dependence of free-carrier impact ionization in semiconductors: GaAs , 1977 .

[53]  T Kimura,et al.  Optical fiber (800-Mbit/sec) transmission experiment at 1.05 microm. , 1978, Applied optics.

[54]  T. Kimura,et al.  Splice loss evaluation for optical fibers with arbitrary-index profile. , 1978, Applied optics.

[55]  Y Murakami,et al.  Cut-off wavelength measurements for single-mode optical fibers. , 1979, Applied optics.

[56]  K. Nawata,et al.  An 800 Mbit/s optical transmission experiment using a single-mode fiber , 1977, IEEE Journal of Quantum Electronics.

[57]  A. Tanaka,et al.  Highly efficient pGaSb‐nGa1−xAlxSb photodiodes , 1978 .

[58]  Joseph Leo Shay,et al.  An InGaAs detector for the 1.0–1.7‐μm wavelength range , 1978 .

[59]  Kazuhiro Daikoku,et al.  A proposal on optical fibre transmission systems in a low-loss 1.0–1.4 μm wavelength region , 1977 .

[60]  Yutaka Katsuyama,et al.  Suitable parameters of single-mode optical fibre , 1979 .

[61]  T.G. Giallorenzi,et al.  Optical communications research and technology: Fiber optics , 1978, Proceedings of the IEEE.

[62]  Klaus Petermann Theory of microbending loss in monomode fibres with arbitrary refractive index profile , 1976 .

[63]  I. Hayashi,et al.  JUNCTION LASERS WHICH OPERATE CONTINUOUSLY AT ROOM TEMPERATURE , 1970 .

[64]  K. Sugiyama,et al.  GaAsSb-AlGaAsSb Double Heterojunction Lasers , 1972 .

[65]  L. Lewin,et al.  Radiation from Curved Dielectric Slabs and Fibers , 1974 .

[66]  Hiroshi Iwasaki,et al.  A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation , 1978 .

[67]  T. Miya,et al.  1.5 m optical transmission experiments using very low-loss single-mode fibres , 1979 .

[68]  C. Burrus,et al.  Room-temperature 1.3 μm c.w. operation of a glass-clad Nd:y.a.g. single-crystal fibre laser end pumped with a single l.e.d. , 1976 .

[69]  Morio Kobayashi,et al.  Compact optical circulator for near-infrared region , 1978 .

[70]  J. J. Hsieh,et al.  GaInAsP/InP Avalanche Photodiodes* , 1978, Integrated and Guided Wave Optics.

[71]  D. Marcuse,et al.  Microbending losses of single-mode, step-index and multimode, parabolic-index fibers , 1976, The Bell System Technical Journal.

[72]  I. Kaminow Optical Waveguide Modulators , 1975 .

[73]  J. J. Hsieh,et al.  Room‐temperature cw operation of buried‐stripe double‐heterostructure GaInAsP/InP diode lasers , 1977 .

[74]  Koichi Asatani,et al.  High-speed optical pulse transmission at 1.29-µm wavelength using low-loss single-mode fibers , 1978 .

[75]  N. Shibata,et al.  Optical attenuation in pure and doped fused silica in the ir wavelength region , 1977 .

[76]  D. Payne,et al.  Zero material dispersion in optical fibres , 1975 .

[77]  Chinlon Lin,et al.  Pulse delay measurements in the zero material dispersion wavelength region for optical fibers. , 1977, Applied optics.

[78]  Dietrich Marcuse,et al.  Curvature loss formula for optical fibers , 1976 .

[79]  W. Gambling,et al.  Curvature and microbending losses in single-mode optical fibres , 1979 .

[80]  N. Imoto,et al.  Wavelength dispersion characteristics of single-mode fibers in low-loss region , 1980, IEEE Journal of Quantum Electronics.

[81]  D. Gloge Weakly guiding fibers. , 1971, Applied optics.

[82]  R. D. Maurer,et al.  Glass fibers for optical communications , 1973 .

[83]  Kenju Otsuka,et al.  Single‐transverse‐mode LiNdP4O12 slab waveguide laser , 1979 .

[84]  K. Daikoku,et al.  Direct measurement of wavelength dispersion in optical fibres-difference method , 1978 .

[85]  Susumu Machida,et al.  Dispersion-free single-mode fibre transmission experiments up to 1.6 Gbit/s , 1979 .

[86]  Kunishige Oe,et al.  Buried Stripe GaInAsP/InP DH Laser Prepared by Using Meltback Method , 1978 .

[87]  H. Law,et al.  Ion-implanted InGaAsP avalanche photodiode , 1978 .

[88]  Y. Murakami,et al.  Bending losses of coated single-mode optical fibers , 1978 .

[89]  Yasuji Murakami,et al.  Normalised frequency dependence of splice losses in single-mode optical fibres , 1978 .

[90]  M. Saruwatari,et al.  LED pumped lithium neodymium tetraphosphate lasers , 1976 .

[91]  Joseph P. Donnelly,et al.  Room-Temperature Operation of GaInAsp/Inp Double-Heterostructure Diode Lasers Emitting at 1.1 µm* , 1976, Integrated Optics.