Green chemistry for environmental remediation

[1]  D. O’Carroll,et al.  Nanoscale zero valent iron and bimetallic particles for contaminated site remediation , 2013 .

[2]  Linhua Fan,et al.  Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures , 2012, Membranes.

[3]  S. Obare,et al.  CHAPTER 5:The Green Synthesis and Environmental Applications of Nanomaterials , 2012 .

[4]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[5]  Seeram Ramakrishna,et al.  A review on nanomaterials for environmental remediation , 2012 .

[6]  Thomas Held,et al.  Green and Sustainable Remediation – eine Perspektive bei der Altlastenbearbeitung? , 2012 .

[7]  I. Mallard,et al.  Remediation technologies using cyclodextrins: an overview , 2012, Environmental Chemistry Letters.

[8]  Dionysios D. Dionysiou,et al.  Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films , 2012 .

[9]  R. Parthasarathi,et al.  Biosurfactant Mediated Remediation Process Evaluation on a Mixture of Heavy Metal Spiked Topsoil Using Soil Column and Batch Washing Methods , 2011 .

[10]  C. Noubactep,et al.  Nanoscale Metallic Iron for Environmental Remediation: Prospects and Limitations , 2011, Water, Air, & Soil Pollution.

[11]  Dionysios D. Dionysiou,et al.  Innovative visible light-activated sulfur doped TiO2 films for water treatment , 2011 .

[12]  Eric M.V. Hoek,et al.  A review of water treatment membrane nanotechnologies , 2011 .

[13]  Dong-Wook Lee,et al.  Novel eco-friendly synthesis of sucrose-templated mesoporous titania with high thermal stability , 2011 .

[14]  D. Dionysiou,et al.  Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst. , 2011, Water research.

[15]  Djamel Ghernaout,et al.  Embodying the chemical water treatment in the green chemistry—A review , 2011 .

[16]  G. Petruzzelli,et al.  Green remediation strategies to improve the quality of contaminated soils , 2011 .

[17]  Maria Gavrilescu,et al.  SUSTAINABILITY IN ENVIRONMENTAL REMEDIATION , 2011 .

[18]  S. Richardson,et al.  Drinking Water Disinfection By-products , 2011 .

[19]  Issa Piri,et al.  Investigation on optimization of conventional drinking water treatment plant , 2010, 2010 2nd International Conference on Chemical, Biological and Environmental Engineering.

[20]  Yaron Paz,et al.  Application of TiO2 photocatalysis for air treatment: Patents’ overview , 2010 .

[21]  T. Maggos,et al.  Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes , 2010 .

[22]  J. B. Collins,et al.  Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols , 2009 .

[23]  L. K. Stewart,et al.  Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation? , 2009 .

[24]  I. Chang,et al.  Pretreatments to control membrane fouling in membrane filtration of secondary effluents , 2009 .

[25]  A. Kulkarni,et al.  Synthesis of TiO2 nanoparticles using microorganisms. , 2009, Colloids and surfaces. B, Biointerfaces.

[26]  Angelo Albini,et al.  Photocatalysis. A multi-faceted concept for green chemistry. , 2009, Chemical Society reviews.

[27]  Xiaocong Wang,et al.  Green chemistry : Pretreatment of seawater by a one-step electrochemical method , 2009 .

[28]  C. Kao,et al.  Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater. , 2009, Journal of hazardous materials.

[29]  P. Bishop,et al.  The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation. , 2009, Environmental pollution.

[30]  J. Byrne,et al.  Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. , 2009, Water research.

[31]  D. Dionysiou,et al.  Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs , 2008 .

[32]  J. Qu,et al.  Enhanced coagulation for high alkalinity and micro-polluted water: the third way through coagulant optimization. , 2008, Water research.

[33]  Y. Ikushima,et al.  Green synthesis of titania nanowire composites on natural cellulose fibers , 2007 .

[34]  J. Conca,et al.  An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd , 2006 .

[35]  M. Ulbricht Advanced functional polymer membranes , 2006 .

[36]  M. Otsuka,et al.  Effect of relative humidity on the photocatalytic activity of titanium dioxide and photostability of famotidine. , 2004, Journal of pharmaceutical sciences.

[37]  E Riera-Franco de Sarabia,et al.  Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts. , 2003, Ultrasonics.

[38]  Paul T Anastas,et al.  Origins, current status, and future challenges of green chemistry. , 2002, Accounts of chemical research.

[39]  Jia-Qian Jiang,et al.  Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. , 2002, Water research.

[40]  E. Ron,et al.  Natural roles of biosurfactants. , 2001, Environmental microbiology.

[41]  Mary M. Kirchhoff,et al.  Peer Reviewed: Green Chemistry Progress & Challenges , 2001 .

[42]  Faisal Khan,et al.  Removal of Volatile Organic Compounds from polluted air , 2000 .

[43]  Hoffmann Environmental implications of acoustic aerosol agglomeration , 2000, Ultrasonics.

[44]  Michael D. Johnson,et al.  Kinetics and mechanism of the reduction of ferrate by one-electron reductants , 1999 .

[45]  Edward J. Wolfrum,et al.  Application of the Photocatalytic Chemistry of Titanium Dioxide to Disinfection and the Killing of Cancer Cells , 1999 .

[46]  O. Manero,et al.  New Polymeric Coagulants Tested in Water and Wastewater , 1998 .

[47]  R. T. Brown,et al.  TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. , 1995, Environmental science & technology.

[48]  R. W. Matthews,et al.  Photocatalytic oxidation of organic contaminants in water: An aid to environmental preservation , 1992 .

[49]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.