The representation group and its application to space groups
暂无分享,去创建一个
[1] J. Killingbeck. Commuting‐Operator Approach to Group Representation Theory , 1970 .
[2] B. L. Davies. Computational group theory in crystal physics: A review , 1982 .
[3] F. Seitz. On the Reduction of Space Groups , 1936 .
[4] Clebsch-Gordan coefficients for space groups , 1973 .
[5] B. G. Wybourne,et al. Calculation of j and jm symbols for arbitrary compact groups. I. Methodology , 1976 .
[6] Jin-quan Chen,et al. Transformation coefficients of permutation groups , 1983 .
[7] Jin-quan Chen,et al. The Casimir invariants and Gel'fand basis of the graded unitary group SU(m/n) , 1983 .
[8] B. Bayman,et al. Tables of identical-particle fractional parentage coefficients , 1966 .
[9] M. Suffczyński,et al. Induced representations of the full holosymmetric double space groups based on the body-centred cubic bravais lattice , 1982 .
[10] Clebsch-Gordan coefficients for the permutation group , 1981 .
[11] P. Butler. Point Group Symmetry Applications , 1981 .
[12] S. Altmann. The crystallographic point groups as semi-direct products , 1963, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[13] M. Suffczyński,et al. Coupling coefficients for the irreducible representations of the space group of garnet , 1982 .
[14] D. Feng,et al. Symmetry and application of SU(mn)⊃SU(m)×SU(n) coefficients of fractional parentage , 1983 .
[15] P.-O. Loewdin,et al. GROUP ALGEBRA, CONVOLUTION ALGEBRA, AND APPLICATIONS TO QUANTUM MECHANICS. , 1967 .
[16] Jin-quan Chen,et al. The Clebsch-Gordon coefficients for U(m/n) Gel'fand basis and isoscalar factors for U(m/n) ⊃ U(m) × U(n) group chain , 1984 .
[17] J. F. Cornwell. Symmetry Properties of the Clebsch-Gordan Coefficients of Space Groups , 1970 .
[18] M. A. Melvin. Simplification in Finding Symmetry-Adapted Eigenfunctions , 1956 .
[19] A general method for obtaining Clebsch‐Gordan coefficients of finite groups. II. Extension to antiunitary groups , 1974 .
[20] A. Maradudin,et al. Symmetry Properties of the Normal Vibrations of a Crystal , 1968 .
[21] John D. Dixon,et al. High speed computation of group characters , 1967 .
[22] P. Rudra,et al. Clebsch–Gordan coefficients of magnetic space groups , 1976 .
[23] R. Dirl. INDUCED PROJECTIVE REPRESENTATIONS , 1977 .
[24] M. Suffczyński,et al. Vector-coupling coefficients for space groups based on simple cubic lattices , 1980 .
[25] Jin-quan Chen,et al. The Clebsch-Gordan coefficients and isoscalar factors of the graded unitary group SU(m/n) , 1983 .
[26] Jin-quan Chen,et al. Coefficients of fractional parentage for U(m + p/n + q) ⊃ U(m/n) × U(p/q) and U(m/n) ⊃ U(m) × U(n) , 1984 .
[27] G. Mackey. INDUCED REPRESENTATIONS OF LOCALLY COMPACT GROUPS I , 1952 .
[28] A. C. Hurley. Ray representations of point groups and the irreducible representations of space groups and double space groups , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[29] M. Aroyo,et al. Clebsch-Gordan coefficients for the corepresentations of Shubnikov point groups. II. Cubic groups , 1981 .
[30] Jin-quan Chen. SU(mn⊇SU(m)×SU(n) isoscalar factors and S(f1+f2)⊇S( f1)×S( f2) isoscalar factors , 1981 .
[31] J. Birman. Selection rules for symmetry breaking and symmetry restoration in continuous transitions , 1982 .
[32] L. Biedenharn. On the Representations of the Semisimple Lie Groups. I. The Explicit Construction of Invariants for the Unimodular Unitary Group in N Dimensions , 1963 .
[33] R. Dirl. Multiplicities for space group representations , 1979 .
[34] A. Mullin,et al. Group Theory and its Applications to Physical Problems , 1962 .
[35] B. G. Wybourne,et al. Calculation of j and jm symbols for arbitrary compact groups. III. Application to SO3 ⊃ T ⊃ C3 ⊃ C1 , 1976 .
[36] N. O. Folland. Factored irreducible symmetry operators , 1977 .
[37] Jin-quan Chen,et al. Intrinsic Lie group and nuclear collective rotation about intrinsic axes , 1983 .
[38] J. Zak. Method to Obtain the Character Tables of Nonsymmorphic Space Groups , 1960 .
[39] J. Birman,et al. Clebsch−Gordan coefficients for crystal space groups , 1975 .
[40] R. Mirman,et al. The decomposition of the tensor product of representations of the symmetric group , 1977 .
[41] Jin-quan Chen,et al. A new approach to permutation group representation , 1982 .
[42] L. T. Klauder. Note on Zak's Method for Constructing Representations of Space Groups , 1968 .
[43] J. Birman,et al. Symmetry change in continuous phase transitions in two-dimensional systems , 1983 .
[44] J. C. Slater. Space Groups and Wave-Function Symmetry in Crystals , 1965 .
[45] K. Mcvoy. SYMMETRY GROUPS IN PHYSICS , 1965 .
[46] J. Schur. Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. , 1907 .
[47] Francesco Iachello,et al. Interacting boson model of collective nuclear states IV. The O(6) limit , 1979 .
[48] N. Neto. Irreducible representations of space groups , 1973 .
[49] I. Itzkan,et al. Clebsch−Gordan coefficients for *X ⊗ *X in diamond O7h−Fd3m and rocksalt O5n−Fm3m , 1975 .
[50] J. F. Cornwell,et al. Clebsch‐Gordan coefficients of symmetry groups , 1978 .
[51] C. Herring. Character tables for two space groups , 1942 .
[52] Clebsch–Gordan coefficients for space groups , 1979 .
[53] J. Neubüser. Computing with groups and their character tables , 1982 .
[54] J. Birman. Space Group Selection Rules: Diamond and Zinc Blende , 1962 .
[55] H. Statz,et al. Zeeman Splittings of Paramagnetic Atoms in Crystalline Fields , 1959 .
[56] Clebsch–Gordan coefficients: General theory , 1979 .
[57] L. Biedenharn,et al. On the Representations of the Semisimple Lie Groups. II , 1963 .
[58] D. F. Johnston. Group theory in solid state physics , 1960 .
[59] M. Aroyo,et al. Clebsch-Gordan coefficients for the corepresentations of Shubnikov point groups. III. Groups of tetragonal, orthorhombic, monoclinic and triclinic crystal systems , 1982 .
[60] George W. Mackey,et al. Unitary representations of group extensions. I , 1958 .
[61] M. F. Reid,et al. 3jm and 6j tables for some bases of SU6 and SU3 , 1982 .
[62] P. V. D. Broek. Clebsch–Gordan coefficients of finite magnetic groups , 1979 .
[63] G. Koster. Matrix Elements of Symmetric Operators , 1958 .
[64] P. V. D. Broek. The Clebsch-Gordan coefficients of the crystallographic space groups , 1979 .
[65] Jin-quan Chen,et al. The Gel'fand basis and matrix elements of the graded unitary group U(m/n) , 1983 .
[66] E. Wigner,et al. Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals , 1936 .
[67] R. Mirman,et al. The Clebsch–Gordan coefficients of Sn , 1977 .
[68] J. Birman,et al. Group-subgroup phase transitions, Hermann's space-group decomposition theorem, and chain subduction criterion in crystals , 1983 .
[69] J. Killingbeck. The class sum operator approach for the point group O and D4 , 1973 .
[70] D. B. Litvin,et al. Clebsch‐Gordan Coefficients for Space Groups , 1968 .
[71] Über Gruppen linearer Substitutionen mit Koeffizienten aus einem algebraischen Zahlkörper , 1911 .
[72] D. Feng,et al. Tables of one-body CFP for group chains U(mn) ⊃ U(m) × U(n) and U(mp) + nqmq + np) ⊃ U(m/n) × U(pq) , 1984 .
[73] D. Strottman,et al. Wigner coefficients for SU(6) ⊇ SU(3) ⊗ SU(2) , 1979 .
[74] J. Schur,et al. Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen. , 1904 .
[75] S. Devine. Th Symmetry in the Rare‐Earth Double Nitrates , 1967 .
[76] A. Gamba. Lie‐like Approach to the Theory of Representations of Finite Groups , 1969 .
[77] Irreducible representations of finite groups , 1982 .
[78] Jin-quan Chen,et al. The Clebsch-Gordan coefficient for SU(m/n) Gel'fand basis , 1984 .