The representation group and its application to space groups

A so-called representation (rep) group G is introduced which is formed by all the Vertical BarGVertical Bar distinct operators (or matrices) of an abstract group G in a rep space L and which is an m-fold covering group of another abstract group g. G forms a rep of G. The rep group differs from an abstract group in that its elements are not linearly independent and thus the number n of its linearly independent class operators is less than its class number N. A systematic theory is established for the rep group based on Dirac's CSCO (complete set of commuting operators) approach in quantum mechanics. This theory also comprises the rep theory for abstract groups as a special case of m = 1. Three kinds of CSCO, the CSCO-I, -II, and -III, are defined which are the analogies of Jsup2, (Jsup2,Jsubz), and (Jsup2,Jsubz,J-barsubz), respectively, for the rotation group SOsub3, where J-barsubz is the component of angular momentum in the intrinsic frame. The primitive characters, the irreducible basis and Clebsch-Gordan coefficients, and the irreducible matrices of the rep group fatG in any subgroup symmetry adaptation can be found by solving the eigenequations of the CSCO-I, -II, and -III of fatG, respectively,more » in appropriate vector spaces.« less

[1]  J. Killingbeck Commuting‐Operator Approach to Group Representation Theory , 1970 .

[2]  B. L. Davies Computational group theory in crystal physics: A review , 1982 .

[3]  F. Seitz On the Reduction of Space Groups , 1936 .

[4]  Clebsch-Gordan coefficients for space groups , 1973 .

[5]  B. G. Wybourne,et al.  Calculation of j and jm symbols for arbitrary compact groups. I. Methodology , 1976 .

[6]  Jin-quan Chen,et al.  Transformation coefficients of permutation groups , 1983 .

[7]  Jin-quan Chen,et al.  The Casimir invariants and Gel'fand basis of the graded unitary group SU(m/n) , 1983 .

[8]  B. Bayman,et al.  Tables of identical-particle fractional parentage coefficients , 1966 .

[9]  M. Suffczyński,et al.  Induced representations of the full holosymmetric double space groups based on the body-centred cubic bravais lattice , 1982 .

[10]  Clebsch-Gordan coefficients for the permutation group , 1981 .

[11]  P. Butler Point Group Symmetry Applications , 1981 .

[12]  S. Altmann The crystallographic point groups as semi-direct products , 1963, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  M. Suffczyński,et al.  Coupling coefficients for the irreducible representations of the space group of garnet , 1982 .

[14]  D. Feng,et al.  Symmetry and application of SU(mn)⊃SU(m)×SU(n) coefficients of fractional parentage , 1983 .

[15]  P.-O. Loewdin,et al.  GROUP ALGEBRA, CONVOLUTION ALGEBRA, AND APPLICATIONS TO QUANTUM MECHANICS. , 1967 .

[16]  Jin-quan Chen,et al.  The Clebsch-Gordon coefficients for U(m/n) Gel'fand basis and isoscalar factors for U(m/n) ⊃ U(m) × U(n) group chain , 1984 .

[17]  J. F. Cornwell Symmetry Properties of the Clebsch-Gordan Coefficients of Space Groups , 1970 .

[18]  M. A. Melvin Simplification in Finding Symmetry-Adapted Eigenfunctions , 1956 .

[19]  A general method for obtaining Clebsch‐Gordan coefficients of finite groups. II. Extension to antiunitary groups , 1974 .

[20]  A. Maradudin,et al.  Symmetry Properties of the Normal Vibrations of a Crystal , 1968 .

[21]  John D. Dixon,et al.  High speed computation of group characters , 1967 .

[22]  P. Rudra,et al.  Clebsch–Gordan coefficients of magnetic space groups , 1976 .

[23]  R. Dirl INDUCED PROJECTIVE REPRESENTATIONS , 1977 .

[24]  M. Suffczyński,et al.  Vector-coupling coefficients for space groups based on simple cubic lattices , 1980 .

[25]  Jin-quan Chen,et al.  The Clebsch-Gordan coefficients and isoscalar factors of the graded unitary group SU(m/n) , 1983 .

[26]  Jin-quan Chen,et al.  Coefficients of fractional parentage for U(m + p/n + q) ⊃ U(m/n) × U(p/q) and U(m/n) ⊃ U(m) × U(n) , 1984 .

[27]  G. Mackey INDUCED REPRESENTATIONS OF LOCALLY COMPACT GROUPS I , 1952 .

[28]  A. C. Hurley Ray representations of point groups and the irreducible representations of space groups and double space groups , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  M. Aroyo,et al.  Clebsch-Gordan coefficients for the corepresentations of Shubnikov point groups. II. Cubic groups , 1981 .

[30]  Jin-quan Chen SU(mn⊇SU(m)×SU(n) isoscalar factors and S(f1+f2)⊇S( f1)×S( f2) isoscalar factors , 1981 .

[31]  J. Birman Selection rules for symmetry breaking and symmetry restoration in continuous transitions , 1982 .

[32]  L. Biedenharn On the Representations of the Semisimple Lie Groups. I. The Explicit Construction of Invariants for the Unimodular Unitary Group in N Dimensions , 1963 .

[33]  R. Dirl Multiplicities for space group representations , 1979 .

[34]  A. Mullin,et al.  Group Theory and its Applications to Physical Problems , 1962 .

[35]  B. G. Wybourne,et al.  Calculation of j and jm symbols for arbitrary compact groups. III. Application to SO3 ⊃ T ⊃ C3 ⊃ C1 , 1976 .

[36]  N. O. Folland Factored irreducible symmetry operators , 1977 .

[37]  Jin-quan Chen,et al.  Intrinsic Lie group and nuclear collective rotation about intrinsic axes , 1983 .

[38]  J. Zak Method to Obtain the Character Tables of Nonsymmorphic Space Groups , 1960 .

[39]  J. Birman,et al.  Clebsch−Gordan coefficients for crystal space groups , 1975 .

[40]  R. Mirman,et al.  The decomposition of the tensor product of representations of the symmetric group , 1977 .

[41]  Jin-quan Chen,et al.  A new approach to permutation group representation , 1982 .

[42]  L. T. Klauder Note on Zak's Method for Constructing Representations of Space Groups , 1968 .

[43]  J. Birman,et al.  Symmetry change in continuous phase transitions in two-dimensional systems , 1983 .

[44]  J. C. Slater Space Groups and Wave-Function Symmetry in Crystals , 1965 .

[45]  K. Mcvoy SYMMETRY GROUPS IN PHYSICS , 1965 .

[46]  J. Schur Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. , 1907 .

[47]  Francesco Iachello,et al.  Interacting boson model of collective nuclear states IV. The O(6) limit , 1979 .

[48]  N. Neto Irreducible representations of space groups , 1973 .

[49]  I. Itzkan,et al.  Clebsch−Gordan coefficients for *X ⊗ *X in diamond O7h−Fd3m and rocksalt O5n−Fm3m , 1975 .

[50]  J. F. Cornwell,et al.  Clebsch‐Gordan coefficients of symmetry groups , 1978 .

[51]  C. Herring Character tables for two space groups , 1942 .

[52]  Clebsch–Gordan coefficients for space groups , 1979 .

[53]  J. Neubüser Computing with groups and their character tables , 1982 .

[54]  J. Birman Space Group Selection Rules: Diamond and Zinc Blende , 1962 .

[55]  H. Statz,et al.  Zeeman Splittings of Paramagnetic Atoms in Crystalline Fields , 1959 .

[56]  Clebsch–Gordan coefficients: General theory , 1979 .

[57]  L. Biedenharn,et al.  On the Representations of the Semisimple Lie Groups. II , 1963 .

[58]  D. F. Johnston Group theory in solid state physics , 1960 .

[59]  M. Aroyo,et al.  Clebsch-Gordan coefficients for the corepresentations of Shubnikov point groups. III. Groups of tetragonal, orthorhombic, monoclinic and triclinic crystal systems , 1982 .

[60]  George W. Mackey,et al.  Unitary representations of group extensions. I , 1958 .

[61]  M. F. Reid,et al.  3jm and 6j tables for some bases of SU6 and SU3 , 1982 .

[62]  P. V. D. Broek Clebsch–Gordan coefficients of finite magnetic groups , 1979 .

[63]  G. Koster Matrix Elements of Symmetric Operators , 1958 .

[64]  P. V. D. Broek The Clebsch-Gordan coefficients of the crystallographic space groups , 1979 .

[65]  Jin-quan Chen,et al.  The Gel'fand basis and matrix elements of the graded unitary group U(m/n) , 1983 .

[66]  E. Wigner,et al.  Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals , 1936 .

[67]  R. Mirman,et al.  The Clebsch–Gordan coefficients of Sn , 1977 .

[68]  J. Birman,et al.  Group-subgroup phase transitions, Hermann's space-group decomposition theorem, and chain subduction criterion in crystals , 1983 .

[69]  J. Killingbeck The class sum operator approach for the point group O and D4 , 1973 .

[70]  D. B. Litvin,et al.  Clebsch‐Gordan Coefficients for Space Groups , 1968 .

[71]  Über Gruppen linearer Substitutionen mit Koeffizienten aus einem algebraischen Zahlkörper , 1911 .

[72]  D. Feng,et al.  Tables of one-body CFP for group chains U(mn) ⊃ U(m) × U(n) and U(mp) + nqmq + np) ⊃ U(m/n) × U(pq) , 1984 .

[73]  D. Strottman,et al.  Wigner coefficients for SU(6) ⊇ SU(3) ⊗ SU(2) , 1979 .

[74]  J. Schur,et al.  Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen. , 1904 .

[75]  S. Devine Th Symmetry in the Rare‐Earth Double Nitrates , 1967 .

[76]  A. Gamba Lie‐like Approach to the Theory of Representations of Finite Groups , 1969 .

[77]  Irreducible representations of finite groups , 1982 .

[78]  Jin-quan Chen,et al.  The Clebsch-Gordan coefficient for SU(m/n) Gel'fand basis , 1984 .