Development of a precise and accurate age–depth model based on 40Ar/39Ar dating of volcanic material in the ANDRILL (1B) drill core, Southern McMurdo Sound, Antarctica

[1]  A. Cooper,et al.  Geochronology of Mount Morning, Antarctica: two-phase evolution of a long-lived trachyte-basanite-phonolite eruptive center , 2010 .

[2]  C. Constable,et al.  Paleomagnetic field properties at high southern latitude , 2009 .

[3]  N. Dunbar,et al.  40Ar/39Ar Geochronology of Minna Bluff, Antarctica: Timing of Mid-Miocene Glacial Erosional Events Within the Ross Embayment , 2008 .

[4]  C. Oppenheimer,et al.  Volcanology of Erebus volcano, Antarctica , 2008 .

[5]  G. Eby,et al.  Geology, geochronology and geochemistry of a basanitic volcano, White Island, Ross Sea, Antarctica , 2007 .

[6]  F. Talarico Clast provenance and variability in MIS (AND-1B) core and their implications for the paleoclimatic evolution recorded in the Windless Bight - southern McMurdo Sound area (Antarctica) , 2007 .

[7]  G. Wilson,et al.  Synthesis of the Initial Scientific Results of the MIS Project (AND-1B Core), Victoria Land Basin, Antarctica , 2007 .

[8]  M. Taviani,et al.  Preliminary Integrated Chronostratigraphy of the AND-1B Core, ANDRILL McMurdo Ice Shelf Project, Antarctica , 2007 .

[9]  D. Marchant,et al.  The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean , 2006 .

[10]  F. Talarico,et al.  Analysis of clast lithologies from CIROS-2 core, New Harbour, Antarctica — Implications for ice flow directions during Plio-Pleistocene time , 2006 .

[11]  G. Wilson,et al.  Seismic stratigraphy of the Plio-Pleistocene Ross Island flexural moat-fill: a prognosis for ANDRILL Program drilling beneath McMurdo-Ross Ice Shelf , 2005 .

[12]  P. Kyle,et al.  40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: volcano evolution , 2004 .

[13]  Lisa Tauxe,et al.  Paleomagnetism and 40Ar/39Ar ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica , 2004 .

[14]  S. Kelley Excess argon in K–Ar and Ar–Ar geochronology , 2002 .

[15]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[16]  D. Rex,et al.  Excess argon in amphiboles linked to greenschist facies alteration in the Kamila Amphibolite Belt, Kohistan island arc system, northern Pakistan: insights from 40Ar/39Ar step-heating and acid leaching experiments , 1996, Geological Magazine.

[17]  G. Denton,et al.  Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the Dry Valleys region of southern Victoria Land , 1996 .

[18]  G. Denton,et al.  Minimal Pliocene-Pleistocene uplift of the dry valleys sector of the Transantarctic Mountains: A key parameter in ice-sheet reconstructions , 1993 .

[19]  T. Onstott,et al.  Incremental heating of hornblende in vacuo: implications for 40Ar/ 39Ar geochronology and the interpretation of thermal histories , 1991 .

[20]  P. E. Baker,et al.  Volcanoes of the Antarctic plate and southern oceans , 1990 .

[21]  G. B. Dalrymple,et al.  Correlation diagrams in 40Ar/39Ar dating: Is there a correct choice? , 1988 .

[22]  T. Harrison Some observations on the interpretation of 40Ar/39Ar age spectra , 1983 .

[23]  R. Armstrong K-Ar dating: Late Cenozoic McMurdo Volcanic Group and dry valley glacial history, Victoria Land, Antarctica , 1978 .

[24]  G. B. Dalrymple,et al.  Identification of excess 40Ar by the 40Ar/39Ar age spectrum technique , 1976 .

[25]  A. Nier,et al.  A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium , 1950 .