An adaptive analog low-density parity-check decoder based on margin propagation

One of the key factors underlying the popularity of low-density parity-check (LDPC) codes is its iterative decoding algorithm which is amenable to efficient analog and digital implementation. However, different applications of LDPC codes (e.g. wireless sensor networks) impose different sets of constraints which include speed, bit error rates (BER) and energy efficiency. Our previous work reported an algorithmic framework for designing margin propagation (MP) based LDPC decoders where the BER performance can be traded off with its energy efficiency. In this paper we present an analog current-mode implementation of an MP-based (32; 8) LDPC decoder. The implementation uses only addition, subtraction and threshold operations and hence is independent of transistor biasing and robust to variations in environmental conditions (e.g. temperature). Measured results from prototypes fabricated in a 0.5µm CMOS process verify the functionality of a (32; 8) LDPC decoder and demonstrate superior BER performance compared to the state-of-the-art analog min-sum decoder at SNR greater than 3.5 dB.

[1]  S. Chakrabartty CMOS analog iterative decoders using margin propagation circuits , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[2]  Ming Gu,et al.  Sparse Decoding of Low Density Parity Check Codes Using Margin Propagation , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[3]  C. Plett,et al.  An 80-Mb/s 0.18-/spl mu/m CMOS analog min-sum iterative decoder for a (32,8,10) LDPC code , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[4]  Bruce F. Cockburn,et al.  A scalable LDPC decoder ASIC architecture with bit-serial message exchange , 2008, Integr..

[5]  Frank R. Kschischang,et al.  A 3.3-Gbps bit-serial block-interlaced min-sum LDPC decoder in 0.13-μm CMOS , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[6]  R.R. Harrison,et al.  CMOS analog MAP decoder for (8,4) Hamming code , 2004, IEEE Journal of Solid-State Circuits.

[7]  C. Plett,et al.  A 0.18-$muhbox m$CMOS Analog Min-Sum Iterative Decoder for a (32,8) Low-Density Parity-Check (LDPC) Code , 2006, IEEE Journal of Solid-State Circuits.

[8]  Massimiliano Sala,et al.  Efficient construction and implementation of short LDPC codes for wireless sensor networks , 2007, 2007 18th European Conference on Circuit Theory and Design.

[9]  Hayder Radha,et al.  Optimally Mapping an Iterative Channel Decoding Algorithm to a Wireless Sensor Network , 2007, 2007 IEEE International Conference on Communications.

[10]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[11]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[12]  Mohammad M. Mansour,et al.  A 640-Mb/s 2048-bit programmable LDPC decoder chip , 2006, IEEE Journal of Solid-State Circuits.

[13]  Lang Tong,et al.  On the Error Exponent and the Use of LDPC Codes for Cooperative Sensor Networks With Misinformed Nodes , 2007, IEEE Transactions on Information Theory.

[14]  A. J. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[15]  Nhan Nguyen,et al.  Low-voltage CMOS circuits for analog iterative decoders , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[17]  A. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[18]  H. Loeliger,et al.  Probability propagation and decoding in analog VLSI , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).