Efficient Weighted Lattice Rules with Applications to Finance
暂无分享,去创建一个
[1] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[2] Fred J. Hickernell,et al. Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..
[3] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[4] Henryk Wozniakowski,et al. Liberating the weights , 2004, J. Complex..
[5] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[6] Xiaoqun Wang,et al. Constructing Robust Good Lattice Rules for Computational Finance , 2007, SIAM J. Sci. Comput..
[7] Henryk Wozniakowski,et al. Tractability of Integration in Non-periodic and Periodic Weighted Tensor Product Hilbert Spaces , 2002, J. Complex..
[8] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[9] P. Glasserman,et al. Monte Carlo methods for security pricing , 1997 .
[10] Fred J. Hickernell,et al. The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..
[11] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[12] R. Caflisch,et al. Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .
[13] Henryk Wozniakowski,et al. Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.
[14] P. L’Ecuyer,et al. Variance Reduction via Lattice Rules , 1999 .
[15] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[16] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[17] Ian H. Sloan,et al. Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..
[18] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[19] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[20] A. Owen,et al. Control variates for quasi-Monte Carlo , 2005 .
[21] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[22] P. Glasserman,et al. A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .
[23] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[24] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[25] Fred J. Hickernell,et al. Randomized Halton sequences , 2000 .
[26] Ian H. Sloan,et al. Component-by-component construction of good lattice rules , 2002, Math. Comput..
[27] Kai-Tai Fang,et al. The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..
[28] F. J. Hickernell. Quadrature Error Bounds with Applications to Lattice Rules , 1997 .
[29] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[30] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[31] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[32] Xiaoqun Wang,et al. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..
[33] Josef Dick,et al. On Korobov Lattice Rules in Weighted Spaces , 2004, SIAM J. Numer. Anal..