Quasi-convex optimization

[1]  V. Ubhaya Lipschitz condition in minimum norm problems on bounded functions , 1985 .

[2]  D. Landers,et al.  Isotonic approximation in Ls , 1981 .

[3]  V. Ubhaya,et al.  An O(n) algorithm for discrete n-point convex approximation with applications to continuous case , 1979 .

[4]  A. Bykat,et al.  Convex Hull of a Finite Set of Points in Two Dimensions , 1978, Inf. Process. Lett..

[5]  Michael Ian Shamos,et al.  Divide and Conquer for Linear Expected Time , 1978, Inf. Process. Lett..

[6]  F. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[7]  V. Ubhaya,et al.  Duality in approximation and conjugate cones in normed linear spaces , 1975 .

[8]  V. Ubhaya,et al.  Isotone optimization. II , 1974 .

[9]  R. Graham An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[10]  Michael D. Intriligator,et al.  Mathematical optimization and economic theory , 1971 .

[11]  Constance van Eeden,et al.  Testing and estimating ordered parameters of probability distribution , 1958 .

[12]  C. Hildreth Point Estimates of Ordinates of Concave Functions , 1954 .

[13]  V. Ubhaya O(n) algorithms for discrete n-point approximation by quasi-convex functions , 1984 .

[14]  R. Smarzewski Determination of Chebyshev approximations by nonlinear admissible subsets , 1983 .

[15]  V. Ubhaya Linear time algorithms for convex and monotone approximation , 1983 .

[16]  D. Varberg Convex Functions , 1973 .

[17]  J. Ponstein,et al.  Seven kinds of convexity , 1967 .

[18]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[19]  Constance Van Eeden,et al.  Maximum Likelihood Estimation of Partially or Completely Ordered Parameters. II , 1957 .

[20]  Constance Van Eeden,et al.  Maximum Likelihood Estimation of Partially or Completely Ordered Parameters 1)1)Report SP 52 of the Statistical Department of the Mathematical Centre, Amsterdam.. I , 1957 .