Understanding CO2 dynamics in metal-organic frameworks with open metal sites.

Hopping along: Metal-organic frameworks such as Mg-MOF-74 possess open metal sites that interact strongly with CO2. Molecular simulations reveal detailed CO2 dynamics (hops between metal sites and localized fluctuations), which can be used to accurately explain the experimentally measured 13C NMR chemical shift anisotropy pattern. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

[1]  R. Krishna,et al.  Investigating the relative influences of molecular dimensions and binding energies on diffusivities of guest species inside nanoporous crystalline materials , 2012 .

[2]  Sergey N. Maximoff,et al.  Ab initio carbon capture in open-site metal-organic frameworks. , 2012, Nature chemistry.

[3]  J. Long,et al.  CO2 dynamics in a metal-organic framework with open metal sites. , 2012, Journal of the American Chemical Society.

[4]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[5]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[6]  B. Smit,et al.  CO2 capture by metal-organic frameworks with van der Waals density functionals. , 2012, The journal of physical chemistry. A.

[7]  Oliver Rübel,et al.  High-Throughput Characterization of Porous Materials Using Graphics Processing Units. , 2012, Journal of chemical theory and computation.

[8]  Jeffrey R. Long,et al.  Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). , 2012, Journal of the American Chemical Society.

[9]  Y. Chabal,et al.  Analyzing the frequency shift of physiadsorbed CO 2 in metal organic framework materials , 2012, 1203.1899.

[10]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[11]  O. Yaghi,et al.  Site-Specific CO2 Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network , 2011 .

[12]  Craig M. Brown,et al.  Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites. , 2011, Journal of the American Chemical Society.

[13]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[14]  W. Zhou,et al.  Carbon capture in metal–organic frameworks—a comparative study , 2011 .

[15]  D. M. D'Alessandro,et al.  Abscheidung von Kohlendioxid: Perspektiven für neue Materialien , 2010 .

[16]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[17]  C. Arean,et al.  Computational and Experimental Studies on the Adsorption of CO, N2, and CO2 on Mg-MOF-74 , 2010 .

[18]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[19]  Richard Blom,et al.  Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide , 2009 .

[20]  Tom K Woo,et al.  Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional. , 2009, Journal of chemical theory and computation.

[21]  Berend Smit,et al.  Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. , 2008, Chemical reviews.

[22]  Jeffrey R. Long,et al.  Wasserstoffspeicherung in mikroporösen metall-organischen Gerüsten mit koordinativ ungesättigten Metallzentren , 2008 .

[23]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[24]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[25]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[26]  D. Frenkel,et al.  Understanding molecular simulation : from algorithms to applications. 2nd ed. , 2002 .

[27]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[28]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[29]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[30]  W. Kutzelnigg,et al.  Low-temperature carbon-13 magnetic resonance in solids. 3. Linear and pseudolinear molecules , 1984 .