Experimental Application of Hybrid Fractional-Order Adaptive Cruise Control at Low Speed

This brief deals with the design and experimental application of a hybrid fractional adaptive cruise control (ACC) at low speeds. First, an improved fractional-order cruise control (CC) is presented for a commercial Citroën C3 prototype-which has automatic driving capabilities-at low speeds, which considers a hybrid model of the vehicle. The quadratic stability of the system is proved using a frequency domain method. Second, ACC maneuvers are implemented with two different distance policies using two cooperating vehicles-one manual, the leader, and the other, automatic-also at very low speeds. In these maneuvers, the objective is to maintain a desired interdistance between the leader and follower vehicles, i.e., to perform a distance control-with a proportional differential (PD) controller in this case-in which the previously designed fractional-order CC is used for the speed control. Simulation and experimental results, obtained in a real circuit, are given to demonstrate the effectiveness of the proposed control strategies.

[1]  Vicente Milanés Montero,et al.  Clavileño: Evolution of an autonomous car , 2010, 13th International IEEE Conference on Intelligent Transportation Systems.

[2]  Ángel Rodríguez Castaño Estimación de posición y control de vehículos autónomos a elevada velocidad. , 2014 .

[3]  Marc Heddebaut,et al.  Millimeter-wave communicating-radars for enhanced vehicle-to-vehicle communications , 2010 .

[4]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[5]  Henk Wymeersch,et al.  Design and Experimental Validation of a Cooperative Driving System in the Grand Cooperative Driving Challenge , 2012, IEEE Transactions on Intelligent Transportation Systems.

[6]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[7]  Carlos Canudas-de-Wit,et al.  A Safe Longitudinal Control for Adaptive Cruise Control and Stop-and-Go Scenarios , 2007, IEEE Transactions on Control Systems Technology.

[8]  José Eugenio Naranjo,et al.  Electro-hydraulic braking system for autonomous vehicles , 2010 .

[9]  Vicente Milanés,et al.  Low Speed Control of an Autonomous Vehicle by Using a Fractional PI Controller , 2011 .

[10]  M Maarten Steinbuch,et al.  Design and implementation of parameterized adaptive cruise control : an explicit model predictive control approach , 2010 .

[11]  Frank L. Lewis,et al.  A framework for hybrid control design , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[12]  Tariq Samad,et al.  A ManeuverBased Hybrid Control Architecture for Autonomous Vehicle Motion Planning , 2003 .

[13]  A. J. Calderón,et al.  On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties , 2004 .

[14]  Vicente Milanés Montero,et al.  Comparing Fuzzy and Intelligent PI Controllers in Stop-and-Go Manoeuvres , 2012, IEEE Transactions on Control Systems Technology.

[15]  N.H. McClamroch,et al.  Performance benefits of hybrid control design for linear and nonlinear systems , 2000, Proceedings of the IEEE.

[16]  Vicente Milanés Montero,et al.  Autonomous Pedestrian Collision Avoidance Using a Fuzzy Steering Controller , 2011, IEEE Transactions on Intelligent Transportation Systems.

[17]  Vicente Milanés Montero,et al.  Fractional Network-Based Control for Vehicle Speed Adaptation via Vehicle-to-Infrastructure Communications , 2013, IEEE Transactions on Control Systems Technology.

[18]  M. Fujita,et al.  A collision avoidance control for multi-vehicle using PWA/MLD hybrid system representation , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[19]  Vicente Milanés Montero,et al.  Throttle and brake pedals automation for populated areas , 2009, Robotica.

[20]  Antonio Bicchi,et al.  Hybrid Feedback Control for Path Tracking by a Bounded-Curvature Vehicle , 2001, HSCC.

[21]  Peter A. Cook Stable Control of Vehicle Convoys for Safety and Comfort , 2007, IEEE Transactions on Automatic Control.

[22]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[23]  Jorge Villagra,et al.  Control basado en PID inteligentes: aplicación al control de crucero de un vehículo a bajas velocidades , 2010 .

[24]  Inés Tejado,et al.  Stability of fractional order switching systems , 2012, Comput. Math. Appl..

[25]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[26]  John Lygeros,et al.  Verified hybrid controllers for automated vehicles , 1998, IEEE Trans. Autom. Control..

[27]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[28]  Ulf Holmberg,et al.  A Modular CACC System Integration and Design , 2012, IEEE Transactions on Intelligent Transportation Systems.

[29]  Jing Zhou,et al.  Range policy of adaptive cruise control vehicles for improved flow stability and string stability , 2005, IEEE Transactions on Intelligent Transportation Systems.

[30]  A. Rachid,et al.  Speed, steering angle and path tracking controls for a tricycle robot , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[31]  W. Marsden I and J , 2012 .

[32]  I. Cock Encyclopedia of Life Support Systems (EOLSS) , 2011 .

[33]  Vivek Agarwal,et al.  A Cost-Effective Ultrasonic Sensor-Based Driver-Assistance System for Congested Traffic Conditions , 2009, IEEE Transactions on Intelligent Transportation Systems.

[34]  E. Feron,et al.  Robust hybrid control for autonomous vehicle motion planning , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[35]  I. Tejado,et al.  Low speed control of an autonomous vehicle using a hybrid fractional order controller , 2011, The 2nd International Conference on Control, Instrumentation and Automation.

[36]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .