Effects of light, CO2 and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp

The current output of the biofuel cells containing a marine alga, Synechococcus sp. and an electron transport mediator, 2-hydroxy-1,4-naphthoquinone (HNQ) was increased under illumination and in the presence of CO 2 . The inhibitory effects of carbonyl cyanide m-chlorophenylhydrazone (CCCP), 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,5-dibromomethylisopropyl-p-benzoquinone (DBMIB), phenylmercury acetate (PMA) and N,N'-dicyclohexylcarbodiimide (DCCD) on the output current of fuel cells run in the light suggested that HNQ accepts electrons mainly at the site of ferredoxin-NADP + reductase (FNR) in the electron transfer chain.

[1]  M. Salin Toxic oxygen species and protective systems of the chloroplast , 1988 .

[2]  J. Waterbury,et al.  Generic assignments, strain histories, and properties of pure cultures of cyanobacteria , 1979 .

[3]  H. Shinohara,et al.  Water photolysis by a photoelectrochemical cell using an immobilized chloroplasts―methyl viologen system , 1984 .

[4]  G. Peschek,et al.  Evidence for plastoquinol-cytochrome f/b-563 reductase as a common electron donor to P700 and cytochrome oxidase in cyanobacteria. , 1982, Biochemical and biophysical research communications.

[5]  M. Mimeault,et al.  A photoelectrochemical cell using immobilized photosynthetic membranes , 1989 .

[6]  M. Mimeault,et al.  Kinetics of photocurrent induction by a thylakoid containing electrochemical cell , 1989 .

[7]  F. Smith,et al.  COLORIMETRIC METHOD FOR DETER-MINATION OF SUGAR AND RELATED SUBSTANCE , 1956 .

[8]  S. Katoh,et al.  Oxidation and reduction of plastoquinone by photosynthetic and respiratory electron transport in a cyanobacterium Synechococcus sp. , 1982 .

[9]  T. Ogawa,et al.  Effects of light on the electrical output of bioelectrochemical fuel‐cells containing Anabaena variabilis M‐2: Mechanism of the post‐illumination burst , 2007 .

[10]  T. Ogawa,et al.  Photosystem-I-driven inorganic carbon transport in the cyanobacterium, Anacystis nidulans , 1985 .

[11]  C. Thurston,et al.  Electron‐transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism—mediator—substrate combinations , 2008 .

[12]  Kazuko Tanaka,et al.  Bioelectrochemical fuel‐cells operated by the cyanobacterium, Anabaena variabilis , 1985 .

[13]  D. Morris Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. , 1948, Science.

[14]  Bruce E. Logan,et al.  Microbial Fuel Cells , 2006 .

[15]  Y. Kouchkovsky,et al.  Study of the photosynthetic electron transfer reactions in chloroplasts and algae with the plastoquinone antagonist dibromothymoquinone. , 1974 .

[16]  E. Elstner,et al.  Bleaching of p-nitrosodimethylaniline by photosystem I of chloroplast lamellae , 1978 .

[17]  T. Ogawa,et al.  Photosystem I-initiated postillumination CO2 burst in a cyanobacterium, Anabaena variabilis , 1983 .

[18]  A. Kaplan,et al.  Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: Response to external CO2 concentration , 1980, Planta.

[19]  T. Ogawa,et al.  A SENSITIVE METHOD FOR DETERMINING CHLOROPHYLL b IN PLANT EXTRACTS , 1965 .

[20]  V. Shuvalov,et al.  Photoelectrochemical effects for chemically modified platinum electrodes with immobilized reaction centers from Rhodobacter sphaeroides R-26 , 1991 .

[21]  D. Goetze,et al.  Monitoring oxygen reduction by photosystem I in whole thylakoid membranes using a photoelectrochemical cell , 1990 .