The Quaternion Fourier Number Transform

In this paper, we introduce the quaternion Fourier number transform (QFNT), which corresponds to a quaternionic version of the well-known number-theoretic transform. We derive several theoretical results necessary to define the QFNT and investigate its main properties. Differently from other quaternion transforms, which are defined over Hamilton’s quaternions, the QFNT requires considering a quaternion algebra over a finite field. Thus, its computation involves integer arithmetic only, avoiding truncation and rounding-off errors. We give an illustrative example regarding the application of the QFNT to digital color image processing.

[1]  Yicong Zhou,et al.  Quaternion-Michelson Descriptor for Color Image Classification , 2016, IEEE Transactions on Image Processing.

[2]  J. Pollard,et al.  The fast Fourier transform in a finite field , 1971 .

[3]  A. N. Kauffman,et al.  Trigonometry in finite fields and a new Hartley transform , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[4]  Soo-Chang Pei,et al.  Demosaicking of Color Filter Array patterns using Quaternion Fourier Transform and low pass filter , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[5]  Juliano B. Lima,et al.  Finite field trigonometric transforms , 2011, Applicable Algebra in Engineering, Communication and Computing.

[6]  Juliano B. Lima,et al.  Image encryption based on the fractional Fourier transform over finite fields , 2014, Signal Process..

[7]  Fernando Pérez-González,et al.  Number Theoretic Transforms for Secure Signal Processing , 2016, IEEE Transactions on Information Forensics and Security.

[8]  Janne Heikkilä,et al.  Video filtering with Fermat number theoretic transforms using residue number system , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[9]  Tsuyoshi Yamamoto,et al.  Asymmetric Fragile Watermarking Using a Number Theoretic Transform , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[10]  Juliano B. Lima,et al.  Encryption of medical images based on the cosine number transform , 2015, Signal Process. Image Commun..

[11]  Licheng Yu,et al.  Vector Sparse Representation of Color Image Using Quaternion Matrix Analysis , 2015, IEEE Transactions on Image Processing.

[12]  Yao Tianren,et al.  Algorithm for linear convolution using number theoretic transforms , 1988 .

[13]  Steven W. McLaughlin,et al.  Block error correcting codes using finite-field wavelet transforms , 2006, IEEE Transactions on Signal Processing.

[14]  Wei Liu,et al.  Frequency-domain quaternion-valued adaptive filtering and its application to wind profile prediction , 2013, 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013).

[15]  Soo-Chang Pei,et al.  Closed-Form Orthogonal Number Theoretic Transform Eigenvectors and the Fast Fractional NTT , 2011, IEEE Transactions on Signal Processing.

[16]  Nobuyuki Matsui,et al.  Feed forward neural network with random quaternionic neurons , 2017, Signal Process..

[17]  Philippe Carré,et al.  Hypercomplex polynomial wavelet-filter bank transform for color image , 2017, Signal Process..

[18]  Xin-Wen Wu,et al.  A 3D Object Encryption Scheme Which Maintains Dimensional and Spatial Stability , 2015, IEEE Transactions on Information Forensics and Security.

[19]  R. Blahut Fast Algorithms for Signal Processing , 2010 .

[20]  Rajakumar Roopkumar Quaternionic one-dimensional fractional Fourier transform , 2016 .

[21]  Subhash C. Kak,et al.  The Number Theoretic Hilbert Transform , 2013, Circuits, Systems, and Signal Processing.

[22]  Deyun Wei,et al.  Generalized Sampling Expansions with Multiple Sampling Rates for Lowpass and Bandpass Signals in the Fractional Fourier Transform Domain , 2016, IEEE Transactions on Signal Processing.

[23]  Tokunbo Ogunfunmi Adaptive Filtering Using Complex Data and Quaternions , 2015, Complex Adaptive Systems.

[24]  Masaki Kobayashi,et al.  Fixed points of split quaternionic hopfield neural networks , 2017, Signal Process..

[25]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2007, IEEE Trans. Image Process..

[26]  Steven Roman Advanced Linear Algebra , 1992 .

[27]  Deyun Wei,et al.  Different forms of Plancherel theorem for fractional quaternion Fourier transform , 2013 .

[28]  David Burton Elementary Number Theory , 1976 .

[29]  Yasmine Abouelseoud,et al.  Two-Phase Image Encryption Scheme Based on FFCT and Fractals , 2017, Secur. Commun. Networks.

[30]  Yue-Nan Li Quaternion Polar Harmonic Transforms for Color Images , 2013, IEEE Signal Processing Letters.

[31]  Bo Fu,et al.  Magnitude-Phase of Quaternion Wavelet Transform for Texture Representation Using Multilevel Copula , 2013, IEEE Signal Processing Letters.

[32]  Sos S. Agaian,et al.  Quaternion Fourier transform based alpha-rooting method for color image measurement and enhancement , 2015, Signal Process..

[33]  Dimitrios S. Alexiadis,et al.  Estimation of Motions in Color Image Sequences Using Hypercomplex Fourier Transforms , 2009, IEEE Transactions on Image Processing.

[34]  Juliano B. Lima,et al.  Closed-form Hermite-Gaussian-like number-theoretic transform eigenvectors , 2016, Signal Process..

[35]  Danilo Comminiello,et al.  Frequency domain quaternion adaptive filters: Algorithms and convergence performance , 2017, Signal Process..

[36]  Henning Rasmussen,et al.  Local quaternion Fourier transform and color image texture analysis , 2010, Signal Process..

[37]  Deyun Wei,et al.  Image super-resolution reconstruction using the high-order derivative interpolation associated with fractional filter functions , 2016, IET Signal Process..

[38]  Vassil S. Dimitrov,et al.  Fragile watermarking using finite field trigonometrical transforms , 2009, Signal Process. Image Commun..

[39]  Tsit Yuen Lam,et al.  Introduction To Quadratic Forms Over Fields , 2004 .

[40]  Juliano B. Lima,et al.  Fractional Fourier, Hartley, Cosine and Sine Number-Theoretic Transforms Based on Matrix Functions , 2017, Circuits Syst. Signal Process..

[41]  Stephen J. Sangwine,et al.  The development of the quaternion wavelet transform , 2017, Signal Process..

[42]  Trieu-Kien Truong,et al.  The use of finite fields to compute convolutions , 1975, IEEE Trans. Inf. Theory.

[43]  Ángel Martín del Rey,et al.  3D medical data security protection , 2016, Expert Syst. Appl..

[44]  Richard E. Blahut,et al.  Fast Algorithms for Signal Processing: Acknowledgments , 2010 .

[45]  Stephen J. Sangwine,et al.  Quaternion Fourier Transforms for Signal and Image Processing , 2014 .