Switching spectroscopy piezoresponse force microscopy of ferroelectric materials

The application of ferroelectric materials for electronic devices necessitates the quantitative study of local switching behavior, including imprint, coercive bias, remanent and saturation responses, and work of switching. Here we introduce switching spectroscopy piezoresponse force microscopy as a tool for real-space imaging of switching properties on the nanoscale. The hysteresis curves, acquired at each point in the image, are analyzed in the thermodynamic and kinetic limits. We expect that this approach will further understanding of the relationships between material microstructure and polarization switching phenomena on the nanoscale, and provide a quantitative tool for ferroelectric-based device characterization.