Real World Verication

Scalable handling of real arithmetic is a crucial part of the verication of hybrid systems, mathematical algorithms, and mixed ana- log/digital circuits. Despite substantial advances in verication tech- nology, complexity issues with classical decision procedures are still a major obstacle for formal verication of real-world applications, e.g., in automotive and avionic industries. To identify strengths and weak- nesses, we examine state of the art symbolic techniques and implemen- tations for the universal fragment of real-closed elds: approaches based on quantier elimination, Grobner Bases, and semidenite programming for the Positivstellensatz. Within a uniform context of the verication tool KeYmaera, we compare these approaches qualitatively and quanti- tatively on verication benchmarks from hybrid systems, textbook algo- rithms, and on geometric problems. Finally, we introduce a new decision procedure combining Grobner Bases and semidenite programming for the real Nullstellensatz that outperforms the individual approaches on an interesting set of problems.

[1]  Warren A. Hunt,et al.  Linear and Nonlinear Arithmetic in ACL2 , 2003, CHARME.

[2]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[3]  André Platzer,et al.  Logical Verification and Systematic Parametric Analysis in Train Control , 2008, HSCC.

[4]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[5]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[6]  André Platzer,et al.  Combining Deduction and Algebraic Constraints for Hybrid System Analysis , 2007, VERIFY.

[7]  André Platzer,et al.  KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description) , 2008, IJCAR.

[8]  Laura Kovács,et al.  Aligator: A Mathematica Package for Invariant Generation (System Description) , 2008, IJCAR.

[9]  Adam W. Strzebonski,et al.  Cylindrical Algebraic Decomposition using validated numerics , 2006, J. Symb. Comput..

[10]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[11]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[12]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[13]  Bernhard Beckert,et al.  Verification of Object-Oriented Software. The KeY Approach - Foreword by K. Rustan M. Leino , 2007, The KeY Approach.

[14]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[15]  Philipp Rümmer,et al.  A Sequent Calculus for Integer Arithmetic with Counterexample Generation , 2007, VERIFY.

[16]  John Harrison,et al.  Verifying Nonlinear Real Formulas Via Sums of Squares , 2007, TPHOLs.

[17]  Lawrence C. Paulson,et al.  Extending a Resolution Prover for Inequalities on Elementary Functions , 2007, LPAR.

[18]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[19]  Volker Weispfenning,et al.  Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.

[20]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[21]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[22]  Thomas Sturm,et al.  A New Approach for Automatic Theorem Proving in Real Geometry , 1998, Journal of Automated Reasoning.

[23]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[24]  John Harrison,et al.  A Proof-Producing Decision Procedure for Real Arithmetic , 2005, CADE.