Kolmogorov–Arnold–Moser theorem

This paper gives a self contained proof of the perturbation theorem for invariant tori in Hamiltonian systems by Kolmogorov, Arnold, and Moser with sharp dieren tiablility hypotheses. The proof follows an idea outlined by Moser in [16] and, as byproducts, gives rise to uniqueness and regularity theorems for invariant tori. 1

[1]  V. M. Tikhomirov,et al.  The General Theory of Dynamical Systems and Classical Mechanics , 1991 .

[2]  J. Moser A stability theorem for minimal foliations on a torus , 1988, Ergodic Theory and Dynamical Systems.

[3]  L. Hörmander,et al.  On the Nash-Moser implicit function theorem , 1985 .

[4]  Jürgen Pöschel,et al.  Integrability of Hamiltonian systems on cantor sets , 1982 .

[5]  M. R. Herman,et al.  Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .

[6]  Helmut Rüssmann,et al.  On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus , 1975 .

[7]  J. Moser Recent developments in the theory of Hamiltonian systems , 1986 .

[8]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[9]  J. Moser On invariant curves of area-preserving mappings of an anulus , 1962 .

[10]  N. I. Achieser Vorlesungen über Approximationstheorie , 1967 .

[11]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .

[12]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[13]  C. Siegel,et al.  Vorlesungen über Himmelsmechanik , 1956 .

[14]  J. Pöschel Integrability of hamiltonian systems on cantor sets , 1982 .

[15]  J. Moser,et al.  A NEW TECHNIQUE FOR THE CONSTRUCTION OF SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[17]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[18]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[19]  H. Jacobowitz Implicit Function Theorems and Isometric Embeddings , 1972 .

[20]  J. Moser Minimal solutions of variational problems on a torus , 1986 .

[21]  E. Zehnder,et al.  Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .