Genomics in Eels — Towards Aquaculture and Biology

Freshwater eels (genus Anguilla), especially the species inhabiting the temperate areas such as the European, American and Japanese eels, are important aquaculture species. Although artificial reproduction has been attempted since the 1930s and large numbers of studies have been conducted, it has not yet fully succeeded. Problems in eel artificial breeding are highly diverse, for instance, lack of basic information about reproduction in nature, no appropriate food for larvae, high mortality, and high individual variation in adults in response to maturation induction. Over the last decade, genomic data have been obtained for a variety of aquatic organisms. Recent technological advances in sequencing and computation now enable the accumulation of genomic information even for non-model species. The draft genome of the European eel Anguilla anguilla has been recently determined using Illumina technology and transcriptomic data based on next generation sequencing have been emerging. Extensive genomic information will facilitate many aspects of the artificial reproduction of eels. Here, we review the progress in genome-wide studies of eels, including additional analysis of the European eel genome data, and discuss future directions and implications of genomic data for aquaculture.

[1]  F. Piferrer,et al.  Genomic resources for a commercial flatfish, the Senegalese sole (Solea senegalensis): EST sequencing, oligo microarray design, and development of the Soleamold bioinformatic platform , 2008, BMC Genomics.

[2]  W. Dekker Worldwide decline of eel resources necessitates immediate action: Quabec Declaration of Concern , 2003 .

[3]  Richard A. Moore,et al.  A salmonid EST genomic study: genes, duplications, phylogeny and microarrays , 2008, BMC Genomics.

[4]  A. Cossins,et al.  Salinity adaptation and gene profiling analysis in the European eel (Anguilla anguilla) using microarray technology. , 2007, General and comparative endocrinology.

[5]  I. Hirono,et al.  Analysis of expressed sequence tags from a Japanese eel Anguilla japonica spleen cDNA library. , 2000 .

[6]  Z. Gong,et al.  Expressed sequence tag analysis of expression profiles of zebrafish testis and ovary. , 2002, Gene.

[7]  M. Blaxter,et al.  Genome-wide genetic marker discovery and genotyping using next-generation sequencing , 2011, Nature Reviews Genetics.

[8]  Michael Lardelli,et al.  Zebrafish as a tool in Alzheimer's disease research. , 2011, Biochimica et biophysica acta.

[9]  G. Thillart,et al.  Spawning migration of the European eel : reproduction index, a useful tool for conservation management , 2009 .

[10]  A. Okamura,et al.  Exotic silver eels Anguilla anguilla in Japanese waters: seaward migration and environmental factors , 2002 .

[11]  M. Ferguson,et al.  The candidate gene, Clock, localizes to a strong spawning time quantitative trait locus region in rainbow trout. , 2006, The Journal of heredity.

[12]  K. Tsukamoto,et al.  Genetic evidence for multiple geographic populations of the giant mottled eel Anguilla marmorata in the Pacific and Indian oceans , 2004, Ichthyological Research.

[13]  S. Brenner,et al.  Integration of the Genetic Map and Genome Assembly of Fugu Facilitates Insights into Distinct Features of Genome Evolution in Teleosts and Mammals , 2011, Genome biology and evolution.

[14]  S. Kalujnaia,et al.  Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. , 2007, Physiological genomics.

[15]  Yi Liao,et al.  Population genetic structure of the Japanese eel Anguilla japonica: panmixia at spatial and temporal scales , 2010 .

[16]  V. V. van Ginneken,et al.  Artificial maturation and reproduction of European silver eel: Development of oocytes during final maturation , 2005 .

[17]  L. Mawdesley-Thomas THE FISHERIES SOCIETY OF THE BRITISH ISLES , 1970 .

[18]  J. Inoue,et al.  Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. , 2003, Molecular phylogenetics and evolution.

[19]  Kerry A. Naish,et al.  Quantitative trait locus analysis of hatch timing, weight, length and growth rate in coho salmon, Oncorhynchus kisutch , 2010, Heredity.

[20]  Michael J. Miller,et al.  Oceanic spawning ecology of freshwater eels in the western North Pacific , 2011, Nature communications.

[21]  Baocheng Guo,et al.  Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts. , 2009, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[22]  T. Northcote,et al.  The New Zealand common smelt: biology and ecology , 2005 .

[23]  Mi-young Seo,et al.  Morphological changes in gill mitochondria-rich cells in cultured Japanese eel Anguilla japonica acclimated to a wide range of environmental salinity , 2009, Fisheries Science.

[24]  Sylvie Dufour,et al.  The silvering process of Anguilla anguilla: a new classification from the yellow resident to the silver migrating stage , 2005 .

[25]  J. W. Jones,et al.  The European freshwater eel , 1975 .

[26]  Yoshiaki Yamada,et al.  Artificial hybrid between Anguilla anguilla and A. japonica , 2004 .

[27]  K. Sundin,et al.  Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss). , 2001, The Journal of heredity.

[28]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[29]  B. Wringe,et al.  Growth-related quantitative trait loci in domestic and wild rainbow trout (Oncorhynchus mykiss) , 2010, BMC Genetics.

[30]  K. Tsukamoto Oceanic migration and spawning of anguillid eels. , 2009, Journal of fish biology.

[31]  K. Tsukamoto,et al.  The European eel , Anguilla anguilla ( L . ) , ifl Japanese waters , 2011 .

[32]  E. Sarropoulou,et al.  Quantitative Trait Loci Involved in Sex Determination and Body Growth in the Gilthead Sea Bream (Sparus aurata L.) through Targeted Genome Scan , 2011, PloS one.

[33]  A. Haro Downstream migration of silver-phase anguillid eels , 2003 .

[34]  J. Inoue,et al.  Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. , 2004, Molecular phylogenetics and evolution.

[35]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[36]  M. Ando,et al.  Central effects of various ligands on drinking behavior in eels acclimated to seawater , 2003, Journal of Experimental Biology.

[37]  L. Bernatchez,et al.  Loss of genetic integrity correlates with stocking intensity in brook charr (Salvelinus fontinalis) , 2010, Molecular ecology.

[38]  M. Ferguson,et al.  Genetic architecture of body weight, condition factor and age of sexual maturation in Icelandic Arctic charr (Salvelinus alpinus) , 2011, Molecular Genetics and Genomics.

[39]  L. Zane,et al.  No apparent genetic bottleneck in the demographically declining European eel using molecular genetics and forward-time simulations , 2011, Conservation Genetics.

[40]  M. Grosell,et al.  Are Membrane Lipids Involved in Osmoregulation? Studies in vivo on the European eel, Anguilla anguilla, After Reduced Ambient Salinity , 2004, Environmental Biology of Fishes.

[41]  G. van den Thillart,et al.  First artificial hybrid of the eel species Anguilla australis and Anguilla anguilla , 2011, BMC Developmental Biology.

[42]  Steven J. M. Jones,et al.  Sequencing the genome of the Atlantic salmon (Salmo salar) , 2010, Genome Biology.

[43]  M. Ferguson,et al.  Sex-linked quantitative trait loci for thermotolerance and length in the rainbow trout. , 2005, The Journal of heredity.

[44]  P. Gagnaire,et al.  WITHIN‐POPULATION STRUCTURE HIGHLIGHTED BY DIFFERENTIAL INTROGRESSION ACROSS SEMIPERMEABLE BARRIERS TO GENE FLOW IN ANGUILLA MARMORATA , 2011, Evolution; international journal of organic evolution.

[45]  P. Wincker,et al.  Analysis of BAC-end sequences in rainbow trout: Content characterization and assessment of synteny between trout and other fish genomes , 2011, BMC Genomics.

[46]  Jiongtang Li,et al.  Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences , 2011, BMC Genomics.

[47]  D. Jerry,et al.  Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer) , 2006 .

[48]  Nicholas Stiffler,et al.  Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags , 2010, PLoS genetics.

[49]  Other Report of the ICES Advisory Committee, 2010 , 2010 .

[50]  W. Hable,et al.  Artificial maturation, fertilization, and early development of the American eel (Anguilla rostrata) , 2010 .

[51]  C. Haley,et al.  QTL for body weight, morphometric traits and stress response in European sea bass Dicentrarchus labrax. , 2009, Animal genetics.

[52]  Tina T. Hu,et al.  Multiplexed shotgun genotyping for rapid and efficient genetic mapping. , 2011, Genome research.

[53]  K. Tsukamoto,et al.  A silvering index for the Japanese eel Anguilla japonica , 2007, Environmental Biology of Fishes.

[54]  Ching-Fong Chang,et al.  Differential expression and regulation of gonadotropins and their receptors in the Japanese eel, Anguilla japonica. , 2007, General and comparative endocrinology.

[55]  A. Guggisberg,et al.  RAD in the realm of next‐generation sequencing technologies , 2011, Molecular ecology.

[56]  G. Young,et al.  Changes in steroid hormone profiles and ovarian histology during salmon pituitary-induced vitellogenesis and ovulation in female New Zealand longfinned eels, Anguilla dieffenbachii gray. , 2001, The Journal of experimental zoology.

[57]  Jonathan M. Wilson,et al.  Osmoregulatory plasticity of the glass eel of Anguilla anguilla: freshwater entry and changes in branchial ion-transport protein expression , 2004 .

[58]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[59]  H. Ohta,et al.  Artificial induction of maturation and fertilization in the Japanese eel, Anguilla japonica , 1997, Fish Physiology and Biochemistry.

[60]  S. Dufour,et al.  Reproductive Endocrinology of the European Eel, Anguilla anguilla , 2003 .

[61]  R. Reinhardt,et al.  A Comparative BAC Map for the Gilthead Sea Bream (Sparus aurata L.) , 2010, Journal of biomedicine & biotechnology.

[62]  K. Tsukamoto Oceanic biology: Spawning of eels near a seamount , 2006, Nature.

[63]  Katsumi Tsukamoto,et al.  Primitive Duplicate Hox Clusters in the European Eel's Genome , 2012, PloS one.

[64]  A. Okamura,et al.  Foreign Eel Species in the Natural Waters of Japan Detected by Polymerase Chain Reaction of Mitochondrial Cytochrome b Region , 1999 .

[65]  P. Lokman,et al.  Induced spawning and early ontogeny of New Zealand freshwater eels {Anguilla dieffenbachii and A. australis) , 2000 .

[66]  C. Araneda,et al.  Analysis of the association between spawning time QTL markers and the biannual spawning behavior in rainbow trout (Oncorhynchus mykiss) , 2010, Genetics and molecular biology.

[67]  Stefania Bortoluzzi,et al.  Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome: EeelBase opens new perspectives for the study of the critically endangered european eel , 2010, BMC Genomics.

[68]  R. K. Koehn,et al.  THE EVOLUTIONARY GENETIC STATUS OF ICELANDIC EELS , 1990, Evolution; international journal of organic evolution.

[69]  T. Unuma,et al.  The first success of glass eel production in the world: basic biology on fish reproduction advances new applied technology in aquaculture , 2005, Fish Physiology and Biochemistry.

[70]  T. Unuma,et al.  A genetic linkage map of the Japanese eel (Anguilla japonica) based on AFLP and microsatellite markers , 2011 .

[71]  J. Petersen,et al.  A major effect quantitative trait locus for whirling disease resistance identified in rainbow trout (Oncorhynchus mykiss) , 2011, Heredity.

[72]  E. Antonissen,et al.  Silvering of European eel (Anguilla anguilla L.): seasonal changes of morphological and metabolic parameters , 2007 .

[73]  Z. Gong,et al.  Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. , 2011, Genome research.

[74]  Yi Liao,et al.  Temporal analysis of population genetic composition in the overexploited Japanese eel Anguilla japonica , 2008 .

[75]  L. Bernatchez,et al.  Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time , 2006, Molecular ecology.

[76]  Fumiko Ohta,et al.  The medaka draft genome and insights into vertebrate genome evolution , 2007, Nature.

[77]  K. Tsukamoto,et al.  A new species of freshwater eel Anguilla luzonensis (Teleostei: Anguillidae) from Luzon Island of the Philippines , 2009, Fisheries Science.

[78]  S. Mackenzie,et al.  Identification of genes involved in immune response of Atlantic salmon (Salmo salar) to IPN virus infection, using expressed sequence tag (EST) analysis , 2011 .

[79]  N. W. Pankhurst Relation of visual changes to the onset of sexual maturation in the European eel Anguilla anguilla (L.) , 1982 .

[80]  R. Reinhardt,et al.  Gilthead sea bream (Sparus auratus) and European sea bass (Dicentrarchus labrax) expressed sequence tags: Characterization, tissue-specific expression and gene markers. , 2010, Marine genomics.

[81]  J. Cornuet,et al.  Microsatellite Analysis of Hatchery Stocks and Natural Populations of Arctic Charr, Salvelinus Alpinus, from the Nordic Region: Implications for Conservation , 2004 .

[82]  V. Ege A Revision of the genus anguilla shaw : a systematic, phylogenetic and geographical study , 1939 .

[83]  Y. Takei,et al.  Identification of two functional guanylin receptors in eel: multiple hormone-receptor system for osmoregulation in fish intestine and kidney. , 2006, General and comparative endocrinology.

[84]  G. Thillart,et al.  Artificial Maturation and Reproduction of the European Eel , 2009 .

[85]  C. Haley,et al.  Major Quantitative Trait Loci Affect Resistance to Infectious Pancreatic Necrosis in Atlantic Salmon (Salmo salar) , 2008, Genetics.

[86]  I. Kornfield,et al.  Reduced Genetic Diversity and Effective Population Size in an Endangered Atlantic Salmon (Salmo Salar) Population from Maine, USA , 2006, Conservation Genetics.