Plasmon-enhanced optical trapping of metal nanoparticles: force calculations and light-driven rotations of nanoaggregates

We investigate experimentally and theoretically plasmon-enhanced optical trapping of metal nanoparticles. We calculate the optical forces on gold and silver nanospheres through a procedure based on the Maxwell stress tensor in the transition T-matrix formalism. We compare our calculations with experimental results finding excellent agreement. We also demonstrate how light-driven rotations can be generated and detected in non-symmetric nanorods aggregates. Analyzing the motion correlations of the trapped nanostructures, we measure with high accuracy both the optical trapping parameters, and the rotation frequency induced by the radiation pressure.

[1]  Peter J. Pauzauskie,et al.  Tunable nanowire nonlinear optical probe , 2007, Nature.

[2]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods by using plasmon resonances. , 2006 .

[3]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[4]  D V Petrov,et al.  Raman spectroscopy of optically trapped particles , 2007 .

[5]  Olaf Schubert,et al.  Quantitative optical trapping of single gold nanorods. , 2008, Nano letters.

[6]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries , 2006 .

[7]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[8]  P. Denti,et al.  Optical trapping of nonspherical particles in the T-matrix formalism. , 2007, Optics express.

[9]  O. M. Maragò,et al.  Photonic Force Microscopy: From Femtonewton Force Sensing to Ultra-Sensitive Spectroscopy , 2010 .

[10]  Rosalba Saija,et al.  Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics , 2003 .

[11]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2002, CLEO 2002.

[12]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[13]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[14]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[15]  G. Volpe,et al.  Torque detection using Brownian fluctuations. , 2006, Physical review letters.

[16]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[17]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers , 1999 .

[18]  Norman R. Heckenberg,et al.  Colloquium: Momentum of an electromagnetic wave in dielectric media , 2007, 0710.0461.

[19]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[20]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[21]  Rosalba Saija,et al.  Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres. , 2009, Optics express.

[22]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[23]  Pal Ormos,et al.  Orientation of flat particles in optical tweezers by linearly polarized light. , 2003, Optics express.

[24]  Stefano Pagliara,et al.  Rotational dynamics of optically trapped nanofibers. , 2009, Optics express.

[25]  D. Grier A revolution in optical manipulation , 2003, Nature.

[26]  P. G. Gucciardi,et al.  Femtonewton force sensing with optically trapped nanotubes. , 2008, Nano letters.

[27]  S. Reihani,et al.  Optimized optical trapping of gold nanoparticles. , 2010, Optics express.

[28]  Rosalba Saija,et al.  Scattering from Model Nonspherical Particles , 2003 .

[29]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[30]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.