PN surfaces and their convolutions with rational surfaces

Rationally parameterized hypersurfaces can be classified with respect to their RC properties (Rational Convolutions) with the help of the Grobner bases theory. This classification focuses on special classes of rational parameterizations which provide a rational description of convolution hypersurfaces generally (GRC parameterizations), or just in some special cases (SRC parameterizations). The main aim of this paper is to bring the theory of the so-called PN surfaces (surfaces with Pythagorean Normal vectors) and their PN parameterizations (parameterizations fulfilling the PN condition) in relation to the theory of SRC parameterizations and to show that this type of parameterizations can be further classified with respect to the degree of the construction of convolution surfaces. The connection of SRC PN parameterizations to the well-known concepts of proper and square-root parameterizations is also investigated.

[1]  Bert Jüttler,et al.  Computing Convolutions and Minkowski sums via Support Functions , 2007 .

[2]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves , 2002, Handbook of Computer Aided Geometric Design.

[3]  Martin Peternell,et al.  Convolution surfaces of quadratic triangular Bézier surfaces , 2008, Comput. Aided Geom. Des..

[4]  Bert Jüttler,et al.  On rationally supported surfaces , 2008, Comput. Aided Geom. Des..

[5]  Martin Peternell,et al.  The Convolution of a Paraboloid and a Parametrized Surface , 2003 .

[6]  J. Rafael Sendra,et al.  Parametric Generalized Offsets to Hypersurfaces , 1997, J. Symb. Comput..

[7]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[8]  Lu Wei,et al.  Rationality of the offsets to algebraic curves and surfaces , 1994 .

[9]  Helmut Pottmann,et al.  A Laguerre geometric approach to rational offsets , 1998, Comput. Aided Geom. Des..

[10]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .

[11]  Bert Jüttler,et al.  Computing exact rational offsets of quadratic triangular Bézier surface patches , 2008, Comput. Aided Des..

[12]  Bert Jüttler,et al.  C HERMITE INTERPOLATION BY PYTHAGOREAN HODOGRAPH SPACE CURVES , 2007 .

[13]  Takis Sakkalis,et al.  Pythagorean-hodograph space curves , 1994, Adv. Comput. Math..

[14]  Takashi Maekawa,et al.  An overview of offset curves and surfaces , 1999, Comput. Aided Des..

[15]  Bert Jüttler,et al.  Rational surfaces with linear normals and their convolutions with rational surfaces , 2006, Comput. Aided Geom. Des..

[16]  Robert E. Barnhill,et al.  Geometry Processing for Design and Manufacturing , 1992 .

[17]  Wei Lü,et al.  Rational parameterization of quadrics and their offsets , 1996, Computing.

[18]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[19]  Sonia Pérez-Díaz,et al.  On the problem of proper reparametrization for rational curves and surfaces , 2006, Comput. Aided Geom. Des..

[20]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[21]  Helmut Pottmann,et al.  Applications of Laguerre geometry in CAGD , 1998, Comput. Aided Geom. Des..

[22]  Lu Wei,et al.  Offset-rational parametric plane curves , 1995, Comput. Aided Geom. Des..

[23]  Les A. Piegl,et al.  Computing offsets of NURBS curves and surfaces , 1999, Comput. Aided Des..

[24]  Carla Manni,et al.  A control polygon scheme for design of planar C2 PH quintic spline curves , 2007, Comput. Aided Geom. Des..

[25]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[26]  Bert Jüttler,et al.  Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics , 2006, Comput. Aided Des..

[27]  Hwan Pyo Moon Minkowski Pythagorean hodographs , 1999, Comput. Aided Geom. Des..

[28]  J. Sendra Algebraic analysis of offsets to hypersurfaces , 2000 .

[29]  J. Oden,et al.  The Mathematics of Surfaces II , 1988 .

[30]  Bohumír Bastl,et al.  Rational hypersurfaces with rational convolutions , 2007, Comput. Aided Geom. Des..

[31]  Rida T. Farouki,et al.  Rational space curves are not "unit speed" , 2007, Comput. Aided Geom. Des..

[32]  Bert Jüttler,et al.  Hermite interpolation by Pythagorean hodograph curves of degree seven , 2001, Math. Comput..

[33]  Carla Manni,et al.  Spatial C^2 PH quintic splines , 2003 .

[34]  Bert Jüttler,et al.  G1 Hermite interpolation by Minkowski Pythagorean hodograph cubics , 2006, Comput. Aided Geom. Des..

[35]  Hans Hagen,et al.  Curve and Surface Design , 1992 .

[36]  Helmut Pottmann,et al.  Rational curves and surfaces with rational offsets , 1995, Comput. Aided Geom. Des..

[37]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[38]  T. Sakkalis,et al.  Pythagorean hodographs , 1990 .

[39]  Binh Pham,et al.  Offset curves and surfaces: a brief survey , 1992, Comput. Aided Des..

[40]  Helmut Pottmann,et al.  Pipe surfaces with rational spine curve are rational , 1996, Comput. Aided Geom. Des..

[41]  J. Rafael Sendra,et al.  Properness and Inversion of Rational Parametrizations of Surfaces , 2002, Applicable Algebra in Engineering, Communication and Computing.

[42]  Bert Jüttler,et al.  Hermite interpolation by piecewise polynomial surfaces with rational offsets , 2000, Comput. Aided Geom. Des..