暂无分享,去创建一个
Sylvie Boldo | Florian Faissole | Micaela Mayero | Franccois Cl'ement | Vincent Martin | S. Boldo | Vincent Martin | François Clément | Florian Faissole | Micaela Mayero
[1] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[2] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[3] F. Tulone,et al. Dual of the Class of HKr Integrable Functions , 2019 .
[4] Micaela Mayero,et al. Formalisation et automatisation de preuves en analyses réelle et numérique , 2001 .
[5] Guillaume Melquiond,et al. Flocq: A Unified Library for Proving Floating-Point Algorithms in Coq , 2011, 2011 IEEE 20th Symposium on Computer Arithmetic.
[6] G. Burton. Sobolev Spaces , 2013 .
[7] O. C. Zienkiewicz,et al. The Finite Element Method: Its Basis and Fundamentals , 2005 .
[8] Bas Spitters,et al. The Picard Algorithm for Ordinary Differential Equations in Coq , 2013, ITP.
[9] Fabian Immler,et al. The Flow of ODEs , 2016, ITP.
[10] Guillaume Melquiond,et al. Trusting computations: A mechanized proof from partial differential equations to actual program , 2012, Comput. Math. Appl..
[11] Rick Durrett. Probability , 2019 .
[12] T. P. Srinivasan,et al. ON THE BOCHNER INTEGRAL , 1973 .
[13] N. Bourbaki,et al. Elements de mathematique. Livre III. Topologie Generale , 1962, The Mathematical Gazette.
[14] Yi Wang,et al. Formalization of continuous Fourier transform in verifying applications for dependable cyber-physical systems , 2020, J. Syst. Archit..
[15] Fabian Immler,et al. Formally Verified Computation of Enclosures of Solutions of Ordinary Differential Equations , 2014, NASA Formal Methods.
[16] Guillaume Melquiond,et al. Journal of Automated Reasoning manuscript No. (will be inserted by the editor) Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program , 2022 .
[17] Yasunari Shidama,et al. Fatou's Lemma and the Lebesgue's Convergence Theorem , 2008, Formaliz. Math..
[18] Jean-Baptiste Jeannin,et al. A formal proof of the Lax equivalence theorem for finite difference schemes , 2021, NFM.
[19] Ioana Pasca,et al. Canonical Big Operators , 2008, TPHOLs.
[20] Y. Shidama,et al. Lebesgue Integral of Simple Valued Function , 2007 .
[21] Noboru Endou. Fubini’s Theorem , 2019, Formaliz. Math..
[22] A. Weil,et al. Sur les espaces à structure uniforme et sur la topologie générale , 1939 .
[23] Guillaume Melquiond,et al. Coquelicot: A User-Friendly Library of Real Analysis for Coq , 2015, Math. Comput. Sci..
[24] Lawrence C. Paulson,et al. An Isabelle/HOL Formalisation of Green’s Theorem , 2016, Journal of Automated Reasoning.
[25] Sören Bartels,et al. Numerical Approximation of Partial Differential Equations , 2016 .
[27] Jeremy Avigad,et al. The Lean Theorem Prover (System Description) , 2015, CADE.
[28] Franccois Cl'ement,et al. Lebesgue integration. Detailed proofs to be formalized in Coq , 2021, ArXiv.
[29] Guillaume Melquiond,et al. Formalization of real analysis: a survey of proof assistants and libraries † , 2015, Mathematical Structures in Computer Science.
[30] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[31] W. W. Zachary,et al. Functional Analysis and the Feynman Operator Calculus , 2016 .
[32] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[33] Johannes Hölzl,et al. Numerical Analysis of Ordinary Differential Equations in Isabelle/HOL , 2012, ITP.
[34] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[35] Catherine Lelay. How to express convergence for analysis in Coq , 2015 .
[36] R. Cooke. Real and Complex Analysis , 2011 .
[37] Johannes Hölzl,et al. Three Chapters of Measure Theory in Isabelle/HOL , 2011, ITP.
[38] Constantin Carathéodory,et al. Algebraic Theory of Measure and Integration , 1986 .
[39] Nicolas Bourbaki,et al. Elements de Mathematiques , 1954, The Mathematical Gazette.
[40] H. Lebesgue,et al. Leçons sur l'intégration et la recherche des fonctions primitives professées au Collège de France , 2009 .
[41] Natarajan Shankar,et al. PVS: A Prototype Verification System , 1992, CADE.
[42] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[43] Robert G. Bartle,et al. A modern theory of integration , 2001 .
[44] Aad van der Vaart,et al. Fundamentals of Nonparametric Bayesian Inference , 2017 .
[45] The mathlib Community. The lean mathematical library , 2020, CPP.
[46] Tobias Nipkow,et al. Isabelle/HOL , 2002, Lecture Notes in Computer Science.
[47] Florian Faissole. Formalization and Closedness of Finite Dimensional Subspaces , 2017, 2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).
[48] L. Schwartz. Théorie des distributions , 1966 .
[49] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[50] J. Dieudonné,et al. Éléments d'analyse , 1972 .
[51] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[52] W. B.. The Theory of Integration , 1928, Nature.
[53] Catherine Lelay. Repenser la bibliothèque réelle de Coq : vers une formalisation de l'analyse classique mieux adaptée. (Reinventing Coq's Reals library : toward a more suitable formalization of classical analysis) , 2015 .
[54] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[55] S. Bochner,et al. Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind , 1933 .
[56] Vincent Martin,et al. A Coq formal proof of the Lax-Milgram theorem , 2017, CPP.
[57] E. Bishop. Foundations of Constructive Analysis , 2012 .
[58] MESURE, INTEGRATION, PROBABILITES , 2013 .
[59] J. K. Hunter,et al. Measure Theory , 2007 .
[60] Sofiène Tahar,et al. On the Formalization of the Lebesgue Integration Theory in HOL , 2010, ITP.
[61] J. Kurzweil. Generalized ordinary differential equations and continuous dependence on a parameter , 1957 .
[62] P. J. Daniell. A General Form of Integral , 1918 .
[63] F. Burk. A Garden of Integrals , 2007 .