Importance truncation for large-scale configuration interaction approaches

We introduce an iterative importance truncation scheme that aims at reducing the dimension of the model space of configuration interaction approaches by an a priori selection of the physically most relevant basis states. Using an importance measure derived from multiconfigurational perturbation theory in combination with an importance threshold, we construct a model space optimized for the description of individual eigenstates of a given Hamiltonian. We discuss in detail various technical aspects and refinements of the importance truncation, such as perturbative corrections for excluded basis states, threshold extrapolation techniques, and different iterative model-space update schemes. We apply the idea of the importance truncation in the context of the no-core shell model (NCSM) for the ab initio description of nuclear ground states. In a series of benchmark calculations for closed- and open-shell nuclei up to {sup 16}O, we compare the ground-state energies obtained in the importance truncated NCSM to the full NCSM. All calculations show an excellent agreement of importance truncated and full NCSM for all cases where the latter is feasible. The results demonstrate that the importance truncated NCSM, while preserving most of the advantages of the full NCSM, gives access to much larger N{sub max}({Dirac_h}/2{pi}){omega} spaces and heavier nuclei. Inmore » this way we are able to perform importance truncated NCSM calculations for nuclei such as {sup 12}C and {sup 16}O up to N{sub max}=22.« less

[1]  P. Navrátil,et al.  Ab initio study of 40Ca with an importance-truncated no-core shell model. , 2007, Physical review letters.

[2]  R. Cimiraglia,et al.  Multireference perturbation CI I. Extrapolation procedures with CAS or selected zero-order spaces , 1997 .

[3]  D. R. Entem,et al.  Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory , 2003 .

[4]  J. Vary,et al.  Converging sequences in the ab initio no-core shell model , 2008, 0802.1611.

[5]  Robert Roth,et al.  Ab initio study of 40Ca with an importance-truncated no-core shell model , 2007 .

[6]  Nuclear structure based on correlated realistic nucleon-nucleon potentials , 2004, nucl-th/0406021.

[7]  H. Hergert,et al.  Matrix elements and few-body calculations within the unitary correlation operator method , 2005, nucl-th/0505080.

[8]  J. Vary,et al.  Ab initio no-core full configuration calculations of light nuclei , 2008, 0808.3420.

[9]  Renzo Cimiraglia,et al.  Recent advances in multireference second order perturbation CI: The CIPSI method revisited , 1987 .

[10]  H. Witała,et al.  Three-nucleon forces from chiral effective field theory , 2002, nucl-th/0208023.

[11]  Robert J. Harrison,et al.  Approximating full configuration interaction with selected configuration interaction and perturbation theory , 1991 .

[12]  A unitary correlation operator method , 1997, nucl-th/9709038.

[13]  P. Navrátil,et al.  Extrapolation method for the no-core shell model , 2004, nucl-th/0401047.

[14]  P. Navrátil,et al.  Ab initio shell model calculations with three-body effective interactions for p-shell nuclei. , 2002, Physical review letters.

[15]  P. Siegbahn Multiple substitution effects in configuration interaction calculations , 1978 .

[16]  H. Hergert,et al.  Unitary Correlation Operator Method and Similarity Renormalization Group: Connections and Differences , 2008, 0802.4239.

[17]  C. David Sherrill,et al.  The Configuration Interaction Method: Advances in Highly Correlated Approaches , 1999 .

[18]  Ernest R. Davidson,et al.  Size consistency in the dilute helium gas electronic structure , 1977 .

[19]  A Nogga,et al.  Structure of A=10-13 nuclei with two- plus three-nucleon interactions from chiral effective field theory. , 2007, Physical review letters.

[20]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[21]  J P Vary,et al.  Properties of 12C in the Ab initio nuclear shell model. , 2000, Physical review letters.

[22]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[23]  Petr Navratil,et al.  Large-basis ab initio no-core shell model and its application to 12 C , 2000 .

[24]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[25]  Yutaka Utsuno,et al.  Monte Carlo shell model for atomic nuclei , 2001 .

[26]  F. Nowacki,et al.  The shell model as a unified view of nuclear structure , 2004, nucl-th/0402046.

[27]  S. Bacca Photodisintegration of light nuclei for testing a correlated realistic interaction in the continuum , 2006, nucl-th/0612016.

[28]  Robert J. Buenker,et al.  Applicability of the multi-reference double-excitation CI (MRD-CI) method to the calculation of electronic wavefunctions and comparison with related techniques , 1978 .

[29]  A. Faessler,et al.  A practical solution to the problem of spurious states in shell-model calculations , 1990 .

[30]  J. Whitten,et al.  Configuration Interaction Studies of Ground and Excited States of Polyatomic Molecules II. The Electronic States and Spectrum of Pyrazine , 1971 .

[31]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[32]  Ab initio shell model with a genuine three-nucleon force for the p-shell nuclei , 2003, nucl-th/0305090.

[33]  P. Navrátil,et al.  Few-nucleon systems in a translationally invariant harmonic oscillator basis , 1999, nucl-th/9907054.

[34]  P. Navrátil,et al.  Ab initio shell model for A = 10 nuclei , 2002 .

[35]  Petr Navrátil,et al.  Ab initio many-body calculations of n-3H, n-4He, p-3,4He, and n-10Be scattering. , 2008, Physical review letters.

[36]  Steven C. Pieper,et al.  Quantum Monte Carlo calculations of excited states in A =6-8 nuclei , 2004 .

[37]  H. Hergert,et al.  Hartree-Fock and many body perturbation theory with correlated realistic NN interactions , 2005, nucl-th/0510036.

[38]  S. C. Pieper,et al.  Evolution of nuclear spectra with nuclear forces. , 2002, Physical review letters.

[39]  S. C. Pieper,et al.  Quantum Monte Carlo Calculations of Light Nuclei , 2001, nucl-th/0103005.

[40]  D. H. Gloeckner,et al.  Spurious center-of-mass motion , 1974 .

[41]  Tensor correlations in the unitary correlation operator method , 2002, nucl-th/0207013.

[42]  Partitioning in multiconfiguration perturbation theory , 2004 .

[43]  Stefano Evangelisti,et al.  Convergence of an improved CIPSI algorithm , 1983 .

[44]  Wlodzislaw Duch,et al.  Size‐extensivity corrections in configuration interaction methods , 1994 .

[45]  P. Surján,et al.  On the perturbation of multiconfiguration wave functions , 2003 .

[46]  J. Schulenburg,et al.  Exact diagonalization of a one-dimensional Hubbard model at density rho=0.4: Effects of Coulomb repulsions and distant transfer , 2007 .

[47]  E. Hylleraas,et al.  Numerische Berechnung der 2S-Terme von Ortho- und Par-Helium , 1930 .

[48]  Robert J. Buenker,et al.  Individualized configuration selection in CI calculations with subsequent energy extrapolation , 1974 .

[49]  A. Parola,et al.  Ground-state properties of the Hubbard model by Lanczos diagonalizations , 2000 .

[50]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[51]  M. Hjorth-Jensen,et al.  Medium-mass nuclei from chiral nucleon-nucleon interactions. , 2008, Physical review letters.

[52]  J. L. Whitten,et al.  Configuration Interaction Studies of Ground and Excited States of Polyatomic Molecules. I. The CI Formulation and Studies of Formaldehyde , 1969 .

[53]  An importance sampling algorithm for generating exact eigenstates of the nuclear Hamiltonian , 2003, nucl-th/0307046.

[54]  Robert J. Buenker,et al.  Energy extrapolation in CI calculations , 1975 .