Machine Learning for Dynamic Discrete Choice

Dynamic discrete choice models often discretize the state vector and restrict its dimension in order to achieve valid inference. I propose a novel two-stage estimator for the set-identified structural parameter that incorporates a high-dimensional state space into the dynamic model of imperfect competition. In the first stage, I estimate the state variable's law of motion and the equilibrium policy function using machine learning tools. In the second stage, I plug the first-stage estimates into a moment inequality and solve for the structural parameter. The moment function is presented as the sum of two components, where the first one expresses the equilibrium assumption and the second one is a bias correction term that makes the sum insensitive (i.e., orthogonal) to first-stage bias. The proposed estimator uniformly converges at the root-N rate and I use it to construct confidence regions. The results developed here can be used to incorporate high-dimensional state space into classic dynamic discrete choice models, for example, those considered in Rust (1987), Bajari et al. (2007), and Scott (2013).

[1]  J. Robins,et al.  Semiparametric Efficiency in Multivariate Regression Models with Missing Data , 1995 .

[2]  Donald W. K. Andrews,et al.  Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity , 1994 .

[3]  Paul Scott Dynamic Discrete Choice Estimation of Agricultural Land Use , 2014 .

[4]  John Rust Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher , 1987 .

[5]  Victor Aguirregabiria,et al.  Sequential Estimation of Dynamic Discrete Games , 2007 .

[6]  Han Hong,et al.  Estimating Static Models of Strategic Interaction , 2006 .

[7]  Prem S. Puri,et al.  On Optimal Asymptotic Tests of Composite Statistical Hypotheses , 1967 .

[8]  A two-stage procedure for partially identified models , 2014 .

[9]  V. J. Hotz,et al.  Conditional Choice Probabilities and the Estimation of Dynamic Models , 1993 .

[10]  J. Robins,et al.  Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .

[11]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[12]  Victor Chernozhukov,et al.  Post-Selection Inference for Generalized Linear Models With Many Controls , 2013, 1304.3969.

[13]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[14]  J. Robins,et al.  Double/Debiased Machine Learning for Treatment and Causal Parameters , 2016, 1608.00060.

[15]  W. Newey,et al.  The asymptotic variance of semiparametric estimators , 1994 .

[16]  A. Pakes,et al.  The Rate of Obsolescence of Knowledge, Research Gestation Lags, and the Private Rate of Return to Research Resources , 1979 .

[17]  Susan Athey,et al.  Beyond prediction: Using big data for policy problems , 2017, Science.

[18]  Victor Aguirregabiria,et al.  Swapping the Nested Fixed-Point Algorithm: a Class of Estimators for Discrete Markov Decision Models , 2002 .

[19]  C. L. Benkard,et al.  Estimating Dynamic Models of Imperfect Competition , 2004 .

[20]  J. Robins,et al.  Locally Robust Semiparametric Estimation , 2016, Econometrica.

[21]  Azeem M. Shaikh,et al.  Inference for the identified set in partially identified econometric models , 2006 .

[22]  Han Hong,et al.  Estimating Static Models of Strategic Interactions , 2010 .

[23]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[24]  J. Stock Nonparametric Policy Analysis , 1989 .

[25]  E. Tamer,et al.  Market Structure and Multiple Equilibria in Airline Markets , 2009 .

[26]  Stefan Wager,et al.  Estimation and Inference of Heterogeneous Treatment Effects using Random Forests , 2015, Journal of the American Statistical Association.

[27]  Matt Goldman,et al.  Orthogonal Machine Learning for Demand Estimation: High Dimensional Causal Inference in Dynamic Panels , 2017 .

[28]  Stephen P. Ryan The Costs of Environmental Regulation in a Concentrated Industry , 2012 .

[29]  Jean O. Lanjouw,et al.  How to Count Patents and Value Intellectual Property: Uses of Patent Renewal and Application Data , 1996 .