C O ] 3 O ct 2 01 6 Algebraic properties of chromatic roots
暂无分享,去创建一个
[1] Julie Zhang,et al. An Introduction to Chromatic Polynomials , 2018 .
[2] Gordon F. Royle,et al. Linear Bound in Terms of Maxmaxflow for the Chromatic Roots of Series-Parallel Graphs , 2013, SIAM J. Discret. Math..
[3] Kerri Morgan,et al. Algebraic invariants arising from the chromatic polynomials of theta graphs , 2014, Australas. J Comb..
[4] Peter J. Cameron,et al. Galois groups of multivariate Tutte polynomials , 2010, 1006.3869.
[5] Adam Bohn. Chromatic roots as algebraic integers , 2012 .
[6] Kerri Jo-Anne Morgan. Algebraic aspects of the chromatic polynomial , 2010 .
[7] Alan D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.
[8] Alan D. Sokal,et al. Chromatic Roots are Dense in the Whole Complex Plane , 2000, Combinatorics, Probability and Computing.
[9] Feng Ming Dong,et al. Non-chordal graphs having integral-root chromatic polynomials II , 2002, Discret. Math..
[10] Marc Noy,et al. Irreducibility of the Tutte Polynomial of a Connected Matroid , 2001, J. Comb. Theory, Ser. B.
[11] Carlo Mereghetti,et al. The 224 non-chordal graphs on less than 10 vertices whose chromatic polynomials have no complex roots , 2001, Discret. Math..
[12] Jason I. Brown,et al. On the Chromatic Roots of , 2000 .
[13] Carsten Thomassen,et al. The Zero-Free Intervals for Chromatic Polynomials of Graphs , 1997, Combinatorics, Probability and Computing.
[14] Bill Jackson,et al. A Zero-Free Interval for Chromatic Polynomials of Graphs , 1993, Combinatorics, Probability and Computing.
[15] Béla Bollobás,et al. The chromatic number of random graphs , 1988, Comb..
[16] K. Braun,et al. Die chromatischen Polynome unterringfreier Graphen , 1974 .
[17] W. T. Tutte,et al. The golden root of a chromatic polynomial , 1969 .
[18] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .