Derivatives of any order of the confluent hypergeometric function F11(a,b,z) with respect to the parameter a or b
暂无分享,去创建一个
[1] Joseph Lipka,et al. A Table of Integrals , 2010 .
[2] Partial wave completion technique for scattering amplitudes in Coulomb dipole excitation , 2004 .
[3] J. Sesma,et al. Successive derivatives of Whittaker functions with respect to the first parameter , 2003 .
[4] F. D. Colavecchia,et al. Two-body Coulomb wavefunctions as kernel for alternative integral transformations , 2003 .
[5] F. D. Colavecchia,et al. Analytic properties of three-body continuum Coulomb wave functions , 2000 .
[6] P. O. Fröman,et al. Coulomb wave functions with complex values of the variable and the parameters , 1999 .
[7] Radosław Szmytkowski. The continuum Schrödinger-Coulomb and Dirac-Coulomb Sturmian functions , 1998 .
[8] Yeong E. Kim,et al. ASYMPTOTIC CONTINUUM WAVE FUNCTION FOR THREE CHARGED PARTICLES , 1997 .
[9] H. V. Haeringen. Charged-particle interactions , 1985 .
[10] A. W. Kemp,et al. A treatise on generating functions , 1984 .
[11] A. Rau,et al. General form of the quantum-defect theory. II , 1982 .
[12] C. Joachain,et al. Physics of atoms and molecules , 1982 .
[13] A. W. Babister. Transcendental functions satisfying nonhomogeneous linear differential equations , 1968 .
[14] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[15] L. Slater,et al. Confluent Hypergeometric Functions , 1961 .
[16] E. M. Lifshitz,et al. Quantum mechanics: Non-relativistic theory, , 1959 .
[17] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .