Derivatives of any order of the confluent hypergeometric function F11(a,b,z) with respect to the parameter a or b

The derivatives to any order of the confluent hypergeometric (Kummer) function F=F11(a,b,z) with respect to the parameter a or b are investigated and expressed in terms of generalizations of multivariable Kampe de Feriet functions. Various properties (reduction formulas, recurrence relations, particular cases, and series and integral representations) of the defined hypergeometric functions are given. Finally, an application to the two-body Coulomb problem is presented: the derivatives of F with respect to a are used to write the scattering wave function as a power series of the Sommerfeld parameter.

[1]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[2]  Partial wave completion technique for scattering amplitudes in Coulomb dipole excitation , 2004 .

[3]  J. Sesma,et al.  Successive derivatives of Whittaker functions with respect to the first parameter , 2003 .

[4]  F. D. Colavecchia,et al.  Two-body Coulomb wavefunctions as kernel for alternative integral transformations , 2003 .

[5]  F. D. Colavecchia,et al.  Analytic properties of three-body continuum Coulomb wave functions , 2000 .

[6]  P. O. Fröman,et al.  Coulomb wave functions with complex values of the variable and the parameters , 1999 .

[7]  Radosław Szmytkowski The continuum Schrödinger-Coulomb and Dirac-Coulomb Sturmian functions , 1998 .

[8]  Yeong E. Kim,et al.  ASYMPTOTIC CONTINUUM WAVE FUNCTION FOR THREE CHARGED PARTICLES , 1997 .

[9]  H. V. Haeringen Charged-particle interactions , 1985 .

[10]  A. W. Kemp,et al.  A treatise on generating functions , 1984 .

[11]  A. Rau,et al.  General form of the quantum-defect theory. II , 1982 .

[12]  C. Joachain,et al.  Physics of atoms and molecules , 1982 .

[13]  A. W. Babister Transcendental functions satisfying nonhomogeneous linear differential equations , 1968 .

[14]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[15]  L. Slater,et al.  Confluent Hypergeometric Functions , 1961 .

[16]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[17]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .