Query Morphing: A Proximity-Based Data Exploration for Query Reformulation

With the increase of information technology, multiple terabytes of structured and unstructured data are generated on daily basis through various sources, such as sensors, lab simulations, social media, web blogs, etc. Due to big data occurrences, acquisition of relevant information is getting complex processing task. These data are often stored and kept in the vast schema, and thus formulating data retrieval requires a fundamental understanding of the schema and content. A discovery-oriented search mechanism delivers good results here, as the user can stepwise explore the database and stop when the result content and quality meet. In this, a naive user often transforms data request in order to discover relevant items; morphing is a historical approach for the generation of various transformations of input. We proposed “Query Morphing”, an approach for query reformulation based on data exploration. Various design issues and implementation constraints of the proposed approach are also listed.

[1]  Pat Hanrahan,et al.  Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases , 2002, IEEE Trans. Vis. Comput. Graph..

[2]  Diogo Cabral,et al.  InspirationWall: Supporting Idea Generation Through Automatic Information Exploration , 2015, Creativity & Cognition.

[3]  Dorota Glowacka,et al.  Directing exploratory search with interactive intent modeling , 2013, CIKM.

[4]  Aniket Kittur,et al.  Apolo: making sense of large network data by combining rich user interaction and machine learning , 2011, CHI.

[5]  David Maier,et al.  Query From Examples: An Iterative, Data-Driven Approach to Query Construction , 2015, Proc. VLDB Endow..

[6]  Bahar Qarabaqi,et al.  User-driven refinement of imprecise queries , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[7]  Abraham Silberschatz,et al.  Learning and verifying quantified boolean queries by example , 2013, PODS '13.

[8]  Bin Zhang,et al.  TimeTree: A Novel Way to Visualize and Manage Exploratory Search Process , 2016, HCI.

[9]  Helen J. Wang,et al.  Online aggregation , 1997, SIGMOD '97.

[10]  Angela Bonifati,et al.  Interactive Inference of Join Queries , 2014, EDBT.

[11]  Martin L. Kersten,et al.  Meet Charles, big data query advisor , 2013, CIDR.

[12]  Ryen W. White,et al.  Exploratory Search: Beyond the Query-Response Paradigm , 2009, Exploratory Search: Beyond the Query-Response Paradigm.

[13]  Peter Brusilovsky,et al.  Adaptive visualization for exploratory information retrieval , 2013, Inf. Process. Manag..

[14]  Surajit Chaudhuri,et al.  Overview of Data Exploration Techniques , 2015, SIGMOD Conference.

[15]  Dorota Glowacka,et al.  IntentStreams: Smart Parallel Search Streams for Branching Exploratory Search , 2015, IUI.

[16]  Guoliang Li,et al.  Interactive SQL query suggestion: Making databases user-friendly , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[17]  Samuel Kaski,et al.  Interactive intent modeling , 2014, Commun. ACM.

[18]  Fotis Psallidas,et al.  S4: Top-k Spreadsheet-Style Search for Query Discovery , 2015, SIGMOD Conference.

[19]  Ameet Talwalkar,et al.  Knowing when you're wrong: building fast and reliable approximate query processing systems , 2014, SIGMOD Conference.

[20]  Thaddeus Beier,et al.  Feature-based image metamorphosis , 1992, SIGGRAPH.

[21]  Gerard Salton,et al.  Improving Retrieval Performance by Relevance Feedback , 1997 .

[22]  Dorota Glowacka,et al.  Directing exploratory search: reinforcement learning from user interactions with keywords , 2013, IUI '13.

[23]  Peter J. Haas,et al.  Interactive data Analysis: The Control Project , 1999, Computer.

[24]  Sridhar Ramaswamy,et al.  The Aqua approximate query answering system , 1999, SIGMOD '99.

[25]  Surajit Chaudhuri,et al.  Discovering queries based on example tuples , 2014, SIGMOD Conference.

[26]  Evaggelia Pitoura,et al.  YmalDB: exploring relational databases via result-driven recommendations , 2013, The VLDB Journal.

[27]  Martin L. Kersten,et al.  The researcher's guide to the data deluge , 2011, Proc. VLDB Endow..

[28]  Stanley B. Zdonik,et al.  Query Steering for Interactive Data Exploration , 2013, CIDR.

[29]  Jignesh M. Patel,et al.  Data Morphing: An Adaptive, Cache-Conscious Storage Technique , 2003, VLDB.

[30]  Ion Stoica,et al.  BlinkDB: queries with bounded errors and bounded response times on very large data , 2012, EuroSys '13.

[31]  Abraham Silberschatz,et al.  Playful Query Specification with DataPlay , 2012, Proc. VLDB Endow..

[32]  Ryen W. White Interactions with Search Systems , 2016 .

[33]  Olga Papaemmanouil,et al.  Explore-by-example: an automatic query steering framework for interactive data exploration , 2014, SIGMOD Conference.

[34]  Vikram Singh,et al.  A scalable query materialization algorithm for interactive data exploration , 2016, 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC).

[35]  Diogo Cabral,et al.  Designing for Exploratory Search on Touch Devices , 2015, CHI.

[36]  Gary Marchionini,et al.  Report on ACM SIGIR 2006 workshop on evaluating exploratory search systems , 2006, SIGF.