Developments in magnetocaloric refrigeration

Modern society relies on readily available refrigeration. Magnetic refrigeration has three prominent advantages compared with compressor-based refrigeration. First, there are no harmful gases involved; second, it may be built more compactly as the working material is a solid; and third, magnetic refrigerators generate much less noise. Recently a new class of magnetic refrigerant-materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: they exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase-transition of first order. This MCE is larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review we compare the different materials considering both scientific aspects and industrial applicability. Because fundamental aspects of MCE are not so widely discussed, we also give some theoretical considerations.

[1]  F. Hu,et al.  Strong interplay between structure and magnetism in the giant magnetocaloric intermetallic compound LaFe11.4Si1.6: a neutron diffraction study , 2003 .

[2]  S. Hirosawa,et al.  Effect of concentration deviation from stoichiometry on the magnetism of Mn1+δAs0.75Sb0.25 , 2004 .

[3]  F. Hu,et al.  Great magnetic entropy change in La(Fe, M)13 (M=Si, Al) with Co doping , 2000 .

[4]  Vitalij K. Pecharsky,et al.  Electrical resistivity, electronic heat capacity, and electronic structure of Gd5Ge4 , 2001 .

[5]  A. Tishin Chapter 4 Magnetocaloric effect in the vicinity of phase transitions , 1999 .

[6]  C. P. Bean,et al.  Magnetic Disorder as a First-Order Phase Transformation , 1962 .

[7]  K. Gschneidner,et al.  The effect of varying the crystal structure on the magnetism, electronic structure and thermodynamics in the Gd 5 (Si x Ge 1- x ) 4 system near x=0.5 , 2003 .

[8]  Z. Altounian,et al.  The structure and large magnetocaloric effect in rapidly quenched LaFe11.4Si1.6 compound , 2004 .

[9]  O. Beckman,et al.  Chapter 3 Compounds of transition elements with nonmetals , 1991 .

[10]  Y. Kuo,et al.  Anomalous thermal properties of the Heusler alloy Ni 2 + x Mn 1 − x Ga near the martensitic transition , 2005 .

[11]  Fujii Hironobu,et al.  Magnetic Properties of Fe2P Single Crystal , 1977 .

[12]  E. Brück,et al.  Magnetocaloric effects in MnFeP1−xAsx-based compounds , 2005 .

[13]  K. Gschneidner,et al.  Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2) , 1997 .

[14]  P. J. Webster,et al.  Magnetic order and phase transformation in Ni2MnGa , 1984 .

[15]  P. Algarabel,et al.  Magnetic-field-induced structural phase transition in Gd 5 ( S i 1.8 Ge 2.2 ) , 1998 .

[16]  T. Goto,et al.  Strong pressure dependences of the magnetization and Curie temperature for CrTe and MnAs with NiAs-type structure , 2002 .

[17]  S. Gama,et al.  Pressure-induced colossal magnetocaloric effect in MnAs. , 2004, Physical review letters.

[18]  M. Ibarra,et al.  GIANT MAGNETORESISTANCE NEAR THE MAGNETOSTRUCTURAL TRANSITION IN GD5(SI1.8GE2.2) , 1998 .

[19]  K. Buschow,et al.  Magnetic entropy change in Mn/sub 1.1/Fe/sub 0.9/P/sub 1-x/Ge/sub x/ compounds , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[20]  L. Häggström,et al.  A Mössbauer study of Fe2P1−xSix (x ≤ 0.35) , 1984 .

[21]  H. Wada,et al.  Extremely Large Magnetic Entropy Change of MnAs1-xSbx near Room Temperature. , 2002 .

[22]  F. Hu,et al.  Very large magnetic entropy change near room temperature in LaFe11.2Co0.7Si1.1 , 2002 .

[23]  Norman Menyuk,et al.  Effects of pressure on the magnetic properties of MnAs , 1969 .

[24]  Richard Chahine,et al.  Direct Measurement of the “Giant” Adiabatic Temperature Change in Gd 5 Si 2 Ge 2 , 1999 .

[25]  E. Matsubara,et al.  Change in the magnetic state of antiferromagnetic La(Fe0.88Al0.12)13 by hydrogenation , 2001 .

[26]  W. Giauque,et al.  Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd 2 (SO 4 ) 3 .8H 2 O , 1933 .

[27]  K. Gschneidner,et al.  MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .

[28]  F. Hu,et al.  Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1-xCOx)11.9Si1.1 , 2005 .

[29]  M. Ibarra,et al.  Nature of the first-order antiferromagnetic-ferromagnetic transition in the Ge-rich magnetocaloric compoundsGd5(SixGe1−x)4 , 2000 .

[30]  Gwyn P. Williams,et al.  Relationship between the magnetocaloric effect and sequential magnetic phase transitions in Ni-Mn-Ga alloys , 2005 .

[31]  F. Hu,et al.  Large magnetic entropy change in a Heusler alloy Ni 52.6 Mn 23.1 Ga 24.3 single crystal , 2001 .

[32]  O. Moze,et al.  Magnetic structure of LaFe10.8Al2.2 and LaFe10.8Al2.2N3 cluster compounds , 2000 .

[33]  C. Magén,et al.  Giant magnetoresistance in the Ge-rich magnetocaloric compound, Gd5(Si0.1Ge0.9)4 , 2001 .

[34]  L. Pytlik,et al.  Magnetic phase diagram of MnAs , 1985 .

[35]  K. Usami,et al.  Coexistence of ferro- and antiferromagnetism and phase transitions in itinerant electron systems , 1977 .

[36]  M. Ibarra,et al.  Pressure effects in the giant magnetocaloric compounds Gd5(SixGe1−x)4 , 2004 .

[37]  V. Pecharsky,et al.  Comment on "Direct measurement of the 'Giant' adiabatic temperature change in Gd5Si2Ge2". , 2000, Physical review letters.

[38]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[39]  T. Tohei,et al.  Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC , 2003 .

[40]  S. Fujieda,et al.  Large magnetocaloric effect in La(FexSi1−x)13 itinerant-electron metamagnetic compounds , 2002 .

[41]  Longwei Yin,et al.  Synthesis of beta carbon nitride nanosized crystal through mechanochemical reaction , 2003 .

[42]  A. B. Pakhomov,et al.  Large magnetic entropy change in compound LaFe/sub 11.44/Al/sub 1.56/ with two magnetic phase transitions , 2001 .

[43]  K. Gschneidner,et al.  The room temperature metastable/stable phase relationships in the pseudo-binary Gd5Si4–Gd5Ge4 system ☆ , 2002 .

[44]  J. Soubeyroux,et al.  Magnetoelastic transition and antiferro-ferromagnetic ordering in the system MnFeP1−yAsy , 1994 .

[45]  B. Shen,et al.  The large magnetic entropy change and the change in the magnetic ground state of the antiferromagnetic compound LaFe11.5Al1.5 caused by carbonization , 2004 .

[46]  Vitalij K. Pecharsky,et al.  Some common misconceptions concerning magnetic refrigerant materials , 2001 .

[47]  O. Gutfleisch,et al.  Large magnetocaloric effect in melt-spun LaFe13−xSix , 2005 .

[48]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[49]  W. K. Chan,et al.  Growth of N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine dome structures , 2005 .

[50]  D. Ryan,et al.  Magnetocaloric effect in La(Fe0.88Al0.12)13Cx interstitial compounds , 2004 .

[51]  Young,et al.  Making and breaking covalent bonds across the magnetic transition in the giant magnetocaloric material Gd5(Si2Ge2) , 2000, Physical review letters.

[52]  F. D. Boer,et al.  On the first-order phase transition in MnFeP0.5As0.4Si0.1 , 2003 .

[53]  Y. Akishige,et al.  Giant magnetocaloric effect of MnAs1-xSbx in the vicinity of first-order magnetic transition , 2003 .

[54]  C. Romming,et al.  Magnetic Behaviour of Mn(1-t)Cr(t)As (0.20 < t < 0.40). , 1984 .

[55]  Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys , 2002 .

[56]  Robert D. Shull,et al.  Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.

[57]  F. D. Boer,et al.  Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3-xGex , 2005 .

[58]  Takeda Takayoshi,et al.  POLARIZED NEUTRON DIFFRACTION STUDY OF FE2P SINGLE CRYSTAL , 1979 .

[59]  K. Gschneidner,et al.  Thermodynamics of the magnetocaloric effect , 2001 .

[60]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[61]  J. Liu,et al.  Structure and preferred site occupation of N in the compound LaFe11Al2 after nitrogenation , 1999 .

[62]  T. Palstra,et al.  Study of the Critical Behaviour of the Magnetization and Electrical Resistivity in Cubic La(Fe, Si)13 Compounds , 1983 .

[63]  A. Handstein,et al.  Effect of reactive milling in hydrogen on the magnetic and magnetocaloric properties of LaFe11.57Si1.43 , 2005 .

[64]  F. D. Boer,et al.  Tuning of the magneto-caloric effects in MnFe(P,As) by substitution of elements , 2004 .

[65]  G. Samolyuk,et al.  Exchange coupling in pure hcp Gd and magnetostructural transition in Gd5(Si2Ge2) , 2005 .

[66]  S. Nikitin,et al.  Synthesis and properties of NaZn13-type interstitial compounds , 2004 .

[67]  V. Pecharsky,et al.  On the high-temperature phase transition of Gd5Si2Ge2. , 2005, Journal of the American Chemical Society.

[68]  Lei Zhang,et al.  Magnetic-phase transitions and magnetocaloric effects , 2002 .

[69]  L. Mañosa,et al.  Entropy change and magnetocaloric effect in Gd5(SixGe1-x)4 , 2002 .

[70]  K. Bärner,et al.  MagneticB-T Phase Diagram of Anion Substituted MnAs. Magnetocaloric Experiments , 1985 .

[71]  F. Hu,et al.  Effects of carbon on magnetic properties and magnetic entropy change of the LaFe11.5Si1.5 compound , 2003 .

[72]  T. Lograsso,et al.  Anisotropy of the magnetoresistance in Gd5Si2Ge2. , 2004, Physical review letters.

[73]  O. Moze,et al.  Neutron diffraction study of history dependence in MnFeP0.6Si0.4 , 2005 .

[74]  K. Gschneidner,et al.  The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2 , 2003 .

[75]  K.H.J. Buschow,et al.  Magnetic refrigeration—towards room-temperature applications , 2003 .

[76]  J. Coey,et al.  Mössbauer spectra and magnetic properties of iron nitrides , 1994 .

[77]  J. Ping Liu,et al.  Magnetic properties of LaFe13-xAlxNy compounds , 1995 .

[78]  E. I. Hladyschewskyj,et al.  Ternäre Verbindungen vom NaZn13‐Typ , 1968 .

[79]  S. Fujieda,et al.  Enhancements of Magnetocaloric Effects in La(Fe0:90Si0:10)13 and Its Hydride by Partial Substitution of Ce for La , 2004 .