Counting Paths and Packings in Halves

We show that one can count k-edge paths in an n-vertex graph and m-set k-packings on an n-element universe, respectively, in time \({n \choose k/2}\) and \({n \choose mk/2}\), up to a factor polynomial in n, k, and m; in polynomial space, the bounds hold if multiplied by 3 k/2 or 5 mk/2, respectively. These are implications of a more general result: given two set families on an n-element universe, one can count the disjoint pairs of sets in the Cartesian product of the two families with O(n l) basic operations, where l is the number of members in the two families and their subsets.

[1]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[2]  Robert Kennes,et al.  Computational aspects of the Mobius transformation of graphs , 1992, IEEE Trans. Syst. Man Cybern..

[3]  Ioannis Koutis A faster parameterized algorithm for set packing , 2005, Inf. Process. Lett..

[4]  今野 浩,et al.  名著に学ぶ 「Linear Programming and Extensions」George B. Dantzig著 , 1998 .

[5]  Noga Alon,et al.  Balanced Hashing, Color Coding and Approximate Counting , 2009, IWPEC.

[6]  Richard M. Karp,et al.  Dynamic programming meets the principle of inclusion and exclusion , 1982, Oper. Res. Lett..

[7]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[8]  Ioannis Koutis,et al.  Faster Algebraic Algorithms for Path and Packing Problems , 2008, ICALP.

[9]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[10]  Joachim Kneis,et al.  Divide-and-Color , 2006, WG.

[11]  Ira Sheldon Pohl,et al.  Bi-directional and heuristic search in path problems , 1969 .

[12]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[13]  Ryan Williams,et al.  Finding, minimizing, and counting weighted subgraphs , 2009, STOC '09.

[14]  Saharon Shelah,et al.  Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..

[15]  Allan Gottlieb,et al.  A generating function approach to the Traveling Salesman Problem , 1977, ACM Annual Conference.

[16]  Weijia Jia,et al.  An efficient parameterized algorithm for m-set packing , 2004, J. Algorithms.

[17]  Noga Alon,et al.  Color-coding , 1995, JACM.

[18]  Mihalis Yannakakis,et al.  On limited nondeterminism and the complexity of the V-C dimension , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[19]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[20]  Ryan Williams,et al.  Finding paths of length k in O*(2k) time , 2008, Inf. Process. Lett..

[21]  Andreas Björklund,et al.  The fast intersection transform with applications to counting paths , 2008, ArXiv.

[22]  Ryan Williams,et al.  Limits and Applications of Group Algebras for Parameterized Problems , 2009, ICALP.

[23]  Ellis Horowitz,et al.  Computing Partitions with Applications to the Knapsack Problem , 1974, JACM.

[24]  Jörg Flum,et al.  The Parameterized Complexity of Counting Problems , 2004, SIAM J. Comput..

[25]  Andreas Björklund,et al.  Trimmed Moebius Inversion and Graphs of Bounded Degree , 2008, Theory of Computing Systems.

[26]  Dieter Kratsch,et al.  Graph-Theoretic Concepts in Computer Science , 1987, Lecture Notes in Computer Science.

[27]  Jianer Chen,et al.  Improved algorithms for path, matching, and packing problems , 2007, SODA '07.

[28]  R. Bellman COMBINATORIAL PROCESSES AND DYNAMIC PROGRAMMING , 1958 .

[29]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.