Observation-Based Estimates of Global Glacier Mass Change and Its Contribution to Sea-Level Change

Glaciers have strongly contributed to sea-level rise during the past century and will continue to be an important part of the sea-level budget during the twenty-first century. Here, we review the progress in estimating global glacier mass change from in situ measurements of mass and length changes, remote sensing methods, and mass balance modeling driven by climate observations. For the period before the onset of satellite observations, different strategies to overcome the uncertainty associated with monitoring only a small sample of the world’s glaciers have been developed. These methods now yield estimates generally reconcilable with each other within their respective uncertainty margins. Whereas this is also the case for the recent decades, the greatly increased number of estimates obtained from remote sensing reveals that gravimetry-based methods typically arrive at lower mass loss estimates than the other methods. We suggest that strategies for better interconnecting the different methods are needed to ensure progress and to increase the temporal and spatial detail of reliable glacier mass change estimates.

[1]  Matthew E. Pritchard,et al.  Recent changes in glacier velocities and thinning at Novaya Zemlya , 2016 .

[2]  M. Huss Density assumptions for converting geodetic glacier volume change to mass change , 2013 .

[3]  Georg Kaser,et al.  Contribution potential of glaciers to water availability in different climate regimes , 2010, Proceedings of the National Academy of Sciences.

[4]  Evan Miles,et al.  Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models , 2013, Climate Dynamics.

[5]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[6]  H. Zumbühl Die Schwankungen der Grindelwaldgletscher in den historischen Bild- und Schriftquellen des 12. bis 19. Jahrhunderts : ein Beitrag zur Gletschergeschichte und Erforschung des Alpenraumes , 1980 .

[7]  S. Allen,et al.  Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya—Karakoram region , 2016, Annals of Glaciology.

[8]  W. Tad Pfeffer,et al.  Recent contributions of glaciers and ice caps to sea level rise , 2012, Nature.

[9]  W. Harrison,et al.  On the characterization of glacier response by a single time-scale , 2001, Journal of Glaciology.

[10]  Neil F. Glasser,et al.  Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum , 2011 .

[11]  Brian Menounos,et al.  Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery , 2010 .

[12]  P. Holmlund,et al.  Historically unprecedented global glacier decline in the early 21st century , 2015 .

[13]  J. Tomkin,et al.  Glaciation as a destructive and constructive control on mountain building , 2010, Nature.

[14]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[15]  S. Raper,et al.  Estimating equilibrium-line altitude (ELA) from glacier inventory data , 2009, Annals of Glaciology.

[16]  J. Graham Cogley,et al.  Geodetic and direct mass-balance measurements: comparison and joint analysis , 2009 .

[17]  G. Casassa,et al.  Retreat of Glaciar Tyndall, Patagonia, over the last half-century , 2005, Journal of Glaciology.

[18]  Solveig H. Winsvold,et al.  A new glacier inventory for the Jostedalsbreen region, Norway, from Landsat TM scenes of 2006 and changes since 1966 , 2011, Annals of Glaciology.

[19]  Finnur Pálsson,et al.  Glacier topography and elevation changes derived from Pléiades sub-meter stereo images , 2014 .

[20]  J. Famiglietti,et al.  A decade of sea level rise slowed by climate-driven hydrology , 2016, Science.

[21]  Wgms Global glacier changes: facts and figures , 2017 .

[22]  R. Armstrong,et al.  Introduction: Global Glacier Monitoring—a Long-Term Task Integrating in Situ Observations and Remote Sensing , 2014 .

[23]  T. Bolch,et al.  Landsat-based inventory of glaciers in western Canada, 1985-2005 , 2010 .

[24]  Anil V. Kulkarni,et al.  Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods , 2014 .

[25]  J. Oerlemans,et al.  A data set of worldwide glacier length fluctuations , 2013 .

[26]  Y. Arnaud,et al.  Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas , 2012, Nature.

[27]  Thomas Loriaux,et al.  Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context , 2013 .

[28]  Lora Koenig,et al.  Operation icebridge: Using instrumented aircraft to bridge the observational gap between icesat and icesat-2 , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[29]  Jeffrey S. Kargel,et al.  Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project , 2007, Comput. Geosci..

[30]  Eric Rignot,et al.  Contribution of the Patagonia Icefields of South America to Sea Level Rise , 2003, Science.

[31]  R. Hock Glaciers and climate change , 2021, Climate Change.

[32]  D. Benn,et al.  Climatic and geometric controls on the global distribution of surge-type glaciers : implications for a unifying model of surging , 2015 .

[33]  Aslak Grinsted,et al.  An estimate of global glacier volume , 2012 .

[34]  R. Rietbroek,et al.  Key Points: @bullet Consistent Method for Estimating Mass Balances from Grace @bullet Mascon Technique @bullet Evaluate Systematic Errors Gia Correction a Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from Grace Data , 2022 .

[35]  Wenke Sun,et al.  An increase in the rate of global mean sea level rise since 2010 , 2015 .

[36]  C. Huggel,et al.  Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges , 2017 .

[37]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[38]  Alberto Bellin,et al.  Decay of a long-term monitored glacier: The Careser glacier (Ortles-Cevedale, European Alps) , 2013 .

[39]  J. Cogley,et al.  Estimating the Glacier Contribution to Sea-Level Rise for the Period 1800–2005 , 2011 .

[40]  T. Bolch,et al.  Ice Volume and Subglacial Topography for Western Canadian Glaciers from Mass Balance Fields, Thinning Rates, and a Bed Stress Model , 2013 .

[41]  J. Dedieu,et al.  25 years (1981–2005) of equilibrium-line altitude and mass-balance reconstruction on Glacier Blanc, French Alps, using remote-sensing methods and meteorological data , 2008, Journal of Glaciology.

[42]  A. Kääb,et al.  Mass-balance reconstruction for Glacier No. 354, Tien Shan, from 2003 to 2014 , 2016, Annals of Glaciology.

[43]  Kyle Duncan,et al.  Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics , 2014, Proceedings of the National Academy of Sciences.

[44]  P. Chevallier,et al.  Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India) , 2007 .

[45]  S. Bettadpur,et al.  Ensemble prediction and intercomparison analysis of GRACE time‐variable gravity field models , 2014 .

[46]  P. Naveau,et al.  Dating of Little Ice Age glacier fluctuations in the tropical Andes: Charquini glaciers, Bolivia, 16°S , 2005 .

[47]  F. Paul,et al.  Glacier-specific elevation changes in parts of western Alaska , 2015, Annals of Glaciology.

[48]  M. Hoelzle,et al.  Surface elevation and mass changes of all Swiss glaciers 1980–2010 , 2014 .

[49]  K. Langley,et al.  CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps , 2015 .

[50]  W. Lipscomb,et al.  Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties , 2013 .

[51]  Jens Schröter,et al.  Revisiting the contemporary sea-level budget on global and regional scales , 2016, Proceedings of the National Academy of Sciences.

[52]  Matthew E. Pritchard,et al.  Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile , 2012 .

[53]  David Parkes,et al.  Attribution of global glacier mass loss to anthropogenic and natural causes , 2014, Science.

[54]  W. T. Pfeffer,et al.  Response time of glaciers as a function of size and mass balance: 1. Theory , 1998 .

[55]  Brief communication: On area- and slope-related thickness estimates and volume calculations for unmeasured glaciers , 2016 .

[56]  Andreas Kääb,et al.  Rapid disintegration of Alpine glaciers observed with satellite data , 2004 .

[57]  Tómas Jóhannesson,et al.  Time–Scale for Adjustment of Glaciers to Changes in Mass Balance , 1989, Journal of Glaciology.

[58]  T. Bolch,et al.  The Randolph Glacier inventory: a globally complete inventory of glaciers , 2014 .

[59]  E. Berthier,et al.  Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya , 2015 .

[60]  Karsten Müller,et al.  Phase Center of L-Band Radar in Polar Snow and Ice , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[61]  S. U. Nussbaumer,et al.  The Little Ice Age history of the Glacier des Bossons (Mont Blanc massif, France): a new high-resolution glacier length curve based on historical documents , 2012, Climatic Change.

[62]  Methods The new remote-sensing-derived Swiss glacier inventory : I . , 2017 .

[63]  E. Ivins,et al.  Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat , 2005 .

[64]  Anthony A. Arendt,et al.  A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada , 2013 .

[65]  M. Hoelzle,et al.  Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps , 1995, Annals of Glaciology.

[66]  John F. Shroder,et al.  Snow and Ice-Related Hazards, Risks, and Disasters , 2018 .

[67]  B. Hallet,et al.  Observed latitudinal variations in erosion as a function of glacier dynamics , 2015, Nature.

[68]  Christopher Nuth,et al.  Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry , 2010 .

[69]  R. Cullen,et al.  Interferometric swath processing of Cryosat data for glacial ice topography , 2013 .

[70]  R. Hock,et al.  Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data , 2010 .

[71]  S. P. Anderson,et al.  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century , 2007, Science.

[72]  G. Roe What do glaciers tell us about climate variability and climate change? , 2010, Journal of Glaciology.

[73]  Contributions to sea level variability along the Norwegian coast for 1960–2010 , 2012 .

[74]  M. Bierkens,et al.  Climate Change Will Affect the Asian Water Towers , 2010, Science.

[75]  F. Paul The influence of changes in glacier extent and surface elevation on modeled mass balance , 2010 .

[76]  T. Bolch,et al.  Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements , 2014 .

[77]  Byron D. Tapley,et al.  Contribution of ice sheet and mountain glacier melt to recent sea level rise , 2013 .

[78]  A. Cazenave,et al.  Total land water storage change over 2003–2013 estimated from a global mass budget approach , 2015 .

[79]  Matthias Huss,et al.  Distributed ice thickness and volume of all glaciers around the globe , 2012 .

[80]  T. Bolch,et al.  Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data , 2015 .

[81]  Andreas Kääb,et al.  Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds , 2012 .

[82]  J. Reynolds,et al.  Integrated Approaches to Adaptation and Disaster Risk Reduction in Dynamic Socio-cryospheric Systems , 2015 .

[83]  Mark F. Meier,et al.  GLACIERS AND THE CHANGING EARTH SYSTEM: A 2004 SNAPSHOT , 2010 .

[84]  Beáta Csathó,et al.  A New Methodology for Detecting Ice Sheet Surface Elevation Changes From Laser Altimetry Data , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[85]  M. Lüthi,et al.  Volume change reconstruction of Swiss glaciers from length change data , 2010 .

[86]  Andrew J. Plater,et al.  Book reviewSea-level change: Roger Revelle; Studies in Geophysics, National Research Council, National Academy Press, Washington, DC, 1990; xii + 246 pp.; USD 29.95, GBP 25.75; ISBN 0-309-04039 , 1992 .

[87]  Angelika Humbert,et al.  Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2 , 2014 .

[88]  S. M. Jong,et al.  Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing , 2009 .

[89]  Michel Baraer,et al.  Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru) , 2014 .

[90]  Rune Engeset,et al.  Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers , 2016 .

[91]  J. Oerlemans,et al.  Reconstructing the glacier contribution to sea-level rise back to 1850 , 2007 .

[92]  F. Paul,et al.  Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results , 2012 .

[93]  J. Cogley,et al.  Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent , 2015 .

[94]  Anshuman Bhardwaj,et al.  LiDAR remote sensing of the cryosphere: Present applications and future prospects , 2016 .

[95]  J. Clague,et al.  Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006 , 2012 .

[96]  Andreas Kääb,et al.  Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~ 1970), Landsat (~ 2000), and ALOS (~ 2007) satellite data , 2010 .

[97]  M. R. van den Broeke,et al.  A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 , 2013, Science.

[98]  Haeberli Wilfried,et al.  The world glacier monitoring service , 1997 .

[99]  F. Paul,et al.  Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach , 2012 .

[100]  Helen Amanda Fricker,et al.  The ICESat-2 Laser Altimetry Mission , 2010, Proceedings of the IEEE.

[101]  Di Wang,et al.  Modeling Glacier Elevation Change from DEM Time Series , 2015, Remote. Sens..

[102]  Andreas Kääb,et al.  Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers , 2004 .

[103]  A. Klein,et al.  Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images , 2006, Journal of Glaciology.

[104]  A. Kääb,et al.  Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change , 2011 .

[105]  V. Radic,et al.  Significant contribution to total mass from very small glaciers , 2012 .

[106]  J. Gregory,et al.  Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change , 2013 .

[107]  Paul E. Geissler,et al.  Glacier Changes in Southeast Alaska and Northwest British Columbia and Contribution to Sea Level Rise , 2007 .

[108]  M. Tamisiea,et al.  A method for detecting rapid mass flux of small glaciers using local sea level variations , 2003 .

[109]  W. Haeberli,et al.  Brief communication "Global glacier volumes and sea level – small but systematic effects of ice below the surface of the ocean and of new local lakes on land" , 2013 .

[110]  Anny Cazenave,et al.  Sea level: A review of present-day and recent-past changes and variability , 2012 .

[111]  Nico Mölg,et al.  The first complete inventory of the local glaciers and ice caps on Greenland , 2012 .

[112]  Andreas Kääb,et al.  Svalbard glacier elevation changes and contribution to sea level rise , 2010 .

[113]  Y. Arnaud,et al.  Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 , 2013 .

[114]  Matthias Huss,et al.  Re-analysis of seasonal mass balance at Abramov glacier 1968-2014 , 2015 .

[115]  Solveig H. Winsvold,et al.  Inventory of Norwegian glaciers , 2012 .

[116]  M. Huss Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe , 2011 .

[117]  Koji Fujita,et al.  Climate regime of Asian glaciers revealed by GAMDAM glacier inventory , 2014 .

[118]  Claudia Notarnicola,et al.  Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): controls and imbalance of the remaining glaciers , 2013 .

[119]  Andreas Kääb,et al.  The new remote-sensing-derived Swiss glacier inventory: I. Methods , 2002, Annals of Glaciology.

[120]  Li Xu,et al.  The second Chinese glacier inventory: data, methods and results , 2015 .

[121]  Frank Paul,et al.  Global Glacier Change Bulletin No. 2 (2014-2015) , 2017 .

[122]  Alexander H. Jarosch,et al.  Past and future sea-level change from the surface mass balance of glaciers , 2012 .

[123]  A. Rivera,et al.  First Glacier Inventory and Recent Changes in Glacier Area in the Monte San Lorenzo Region (47°S), Southern Patagonian Andes, South America , 2013 .

[124]  Roger G. Barry,et al.  Glacier monitoring within the Global Climate Observing System* , 2000, Annals of Glaciology.

[125]  Anshuman Bhardwaj,et al.  UAVs as remote sensing platform in glaciology: Present applications and future prospects , 2016 .

[126]  D. Montgomery,et al.  Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes , 2010, Proceedings of the National Academy of Sciences.

[127]  F. Paul,et al.  Comparison of mass balances for Vernagtferner, Oetzal Alps, as obtained from direct measurements and distributed modeling , 2009, Annals of Glaciology.

[128]  Michael A. Wulder,et al.  Opening the archive: How free data has enabled the science and monitoring promise of Landsat , 2012 .

[129]  Matthias Huss,et al.  A new model for global glacier change and sea-level rise , 2015, Front. Earth Sci..

[130]  M. Zemp,et al.  Global glacier changes : facts and figures , 2008 .

[131]  M. Zemp,et al.  Extending glacier monitoring into the Little Ice Age and beyond , 2011 .

[132]  A. Bauder,et al.  New long-term mass-balance series for the Swiss Alps , 2015 .

[133]  Matt A. King,et al.  On the Rebound: Modeling Earth's Ever-Changing Shape , 2015, Eos.

[134]  Frank Paul,et al.  Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models , 2008 .

[135]  Peter Jansson,et al.  The concept of glacier storage: a review , 2003 .

[136]  T. Wright,et al.  Earthquake monitoring gets boost from a new satellite , 2015 .

[137]  S. B. Nielsen,et al.  Glacial effects limiting mountain height , 2009, Nature.

[138]  W. Krabill,et al.  Penetration depth of interferometric synthetic‐aperture radar signals in snow and ice , 2001, Geophysical Research Letters.

[139]  B. Menounos,et al.  Recent volume loss of British Columbian glaciers, Canada , 2007 .

[140]  Molly H. Polk,et al.  New Geographies of Water and Climate Change in Peru: Coupled Natural and Social Transformations in the Santa River Watershed , 2013 .

[141]  Matthias Huss,et al.  The length of the world's glaciers – a new approach for the global calculation of center lines , 2014 .

[142]  N. Glasser,et al.  Heterogeneity in Karakoram glacier surges , 2015 .