CERKL interacts with mitochondrial TRX2 and protects retinal cells from oxidative stress-induced apoptosis.

[1]  C. Cervellati,et al.  Hypoxia induces cell damage via oxidative stress in retinal epithelial cells , 2014, Free radical research.

[2]  J. Garcia-Fernández,et al.  CERKL Knockdown Causes Retinal Degeneration in Zebrafish , 2013, PloS one.

[3]  W. Klein,et al.  Expression and localization of CERKL in the mammalian retina, its response to light-stress, and relationship with NeuroD1 gene. , 2013, Experimental eye research.

[4]  F. Urano,et al.  Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. , 2012, Cell metabolism.

[5]  S. Jarrett,et al.  Consequences of oxidative stress in age-related macular degeneration. , 2012, Molecular aspects of medicine.

[6]  G. Marfany,et al.  Targeted knockdown of Cerkl, a retinal dystrophy gene, causes mild affectation of the retinal ganglion cell layer. , 2012, Biochimica et biophysica acta.

[7]  P. Greengard,et al.  IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. , 2012, Cell metabolism.

[8]  A. Dizhoor,et al.  Ceramide kinase-like (CERKL) interacts with neuronal calcium sensor proteins in the retina in a cation-dependent manner. , 2012, Investigative ophthalmology & visual science.

[9]  M. Murphy,et al.  Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. , 2012, Antioxidants & redox signaling.

[10]  Wenjun Xiong,et al.  Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation to Blame?* , 2011, The Journal of Biological Chemistry.

[11]  G. Superti-Furga,et al.  Complement factor H binds malondialdehyde epitopes and protects from oxidative stress , 2011, Nature.

[12]  J. Abril,et al.  High transcriptional complexity of the retinitis pigmentosa CERKL gene in human and mouse. , 2011, Investigative ophthalmology & visual science.

[13]  C. Deng,et al.  A HIF-1 target, ATIA, protects cells from apoptosis by modulating the mitochondrial thioredoxin, TRX2. , 2011, Molecular cell.

[14]  Elias S. J. Arnér,et al.  Human Protein Atlas of Redox Systems — What Can Be Learnt? , 2011 .

[15]  Robert W. Taylor,et al.  Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. , 2011, Human molecular genetics.

[16]  Elias S. J. Arnér,et al.  Human Protein Atlas of redox systems - what can be learnt? , 2011, Biochimica et biophysica acta.

[17]  T. Ben‐Yosef,et al.  Spatiotemporal expression pattern of ceramide kinase-like in the mouse retina , 2010, Molecular vision.

[18]  J. Veltman,et al.  Homozygosity mapping in patients with cone-rod dystrophy: novel mutations and clinical characterizations. , 2010, Investigative ophthalmology & visual science.

[19]  R. Hamanaka,et al.  Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. , 2010, Trends in biochemical sciences.

[20]  A. Holmgren,et al.  Thioredoxin and thioredoxin reductase: current research with special reference to human disease. , 2010, Biochemical and biophysical research communications.

[21]  Shomi S. Bhattacharya,et al.  Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait , 2010, Nature Reviews Genetics.

[22]  A. Swaroop,et al.  Human retinopathy-associated ciliary protein retinitis pigmentosa GTPase regulator mediates cilia-dependent vertebrate development. , 2010, Human molecular genetics.

[23]  A. J. Roman,et al.  CERKL mutations cause an autosomal recessive cone-rod dystrophy with inner retinopathy. , 2009, Investigative ophthalmology & visual science.

[24]  Mugen Liu,et al.  Novel compound heterozygous mutations in CERKL cause autosomal recessive retinitis pigmentosa in a nonconsanguineous Chinese family. , 2009, Archives of ophthalmology.

[25]  G. Marfany,et al.  Overexpression of CERKL, a gene responsible for retinitis pigmentosa in humans, protects cells from apoptosis induced by oxidative stress , 2009, Molecular vision.

[26]  Eberhart Zrenner,et al.  Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration , 2008, Molecular Neurobiology.

[27]  M. Mohamed,et al.  A missense mutation in the nuclear localization signal sequence of CERKL (p.R106S) causes autosomal recessive retinal degeneration , 2008, Molecular vision.

[28]  Rafael Radi,et al.  Protein tyrosine nitration--functional alteration or just a biomarker? , 2008, Free radical biology & medicine.

[29]  B. Kinzel,et al.  Wild-type levels of ceramide and ceramide-1-phosphate in the retina of ceramide kinase-like-deficient mice. , 2008, Biochemical and biophysical research communications.

[30]  V. Pérez,et al.  Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. , 2008, Free radical biology & medicine.

[31]  Joe G Hollyfield,et al.  Oxidative damage–induced inflammation initiates age-related macular degeneration , 2008, Nature Medicine.

[32]  D. Sharon,et al.  A common founder mutation of CERKL underlies autosomal recessive retinal degeneration with early macular involvement among Yemenite Jews. , 2007, Investigative ophthalmology & visual science.

[33]  P. Campochiaro,et al.  Antioxidants reduce cone cell death in a model of retinitis pigmentosa. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Corinne E Griguer,et al.  Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. , 2006, Cancer research.

[35]  Hajime Nakamura,et al.  Thioredoxin and its related molecules: update 2005. , 2005, Antioxidants & redox signaling.

[36]  P. Campochiaro,et al.  Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa , 2005, Journal of cellular physiology.

[37]  Dean P. Jones,et al.  Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. , 2005, The Biochemical journal.

[38]  A. Billich,et al.  Characterization of a ceramide kinase-like protein. , 2005, Biochimica et biophysica acta.

[39]  Jarema Malicki,et al.  Genetics of photoreceptor development and function in zebrafish. , 2004, The International journal of developmental biology.

[40]  M. Mirault,et al.  Mitochondrial Thioredoxin System , 2004, Journal of Biological Chemistry.

[41]  G. Marfany,et al.  Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). , 2004, American journal of human genetics.

[42]  G. Powis,et al.  The Absence of Mitochondrial Thioredoxin 2 Causes Massive Apoptosis, Exencephaly, and Early Embryonic Lethality in Homozygous Mice , 2003, Molecular and Cellular Biology.

[43]  田中 亨 Thioredoxin-2(TRX-2)is an essential gene regulating mitochondria-dependent apoptosis , 2002 .

[44]  Santiago Lamas,et al.  Nitrosylation The Prototypic Redox-Based Signaling Mechanism , 2001, Cell.

[45]  B. Fanburg,et al.  Reactive oxygen species in cell signaling. , 2000, American journal of physiology. Lung cellular and molecular physiology.

[46]  C. Cepko,et al.  Vertebrate photoreceptor cell development and disease. , 1998, Trends in cell biology.

[47]  R. S. Sohal,et al.  DNA oxidative damage and life expectancy in houseflies. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[48]  H. Esterbauer,et al.  Identification of metabolic pathways of the lipid peroxidation product 4-hydroxynonenal by enterocytes of rat small intestine. , 1991, Biochemistry international.