A combined first-principles and data-driven approach to model building
暂无分享,去创建一个
[1] Nikolaos V. Sahinidis,et al. A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..
[2] A. S. Korkhin. Parameter estimation accuracy for nonlinear regression with nonlinear constraints , 1998 .
[3] Pavel S. Knopov,et al. Regression Analysis Under A Priori Parameter Restrictions , 2011 .
[4] Berç Rustem,et al. Semi-Infinite Programming and Applications to Minimax Problems , 2003, Ann. Oper. Res..
[5] N. Sahinidis,et al. Steady‐state process optimization with guaranteed robust stability under parametric uncertainty , 2011 .
[6] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[7] Clifford M. Hurvich,et al. A CORRECTED AKAIKE INFORMATION CRITERION FOR VECTOR AUTOREGRESSIVE MODEL SELECTION , 1993 .
[8] Gary C. McDonald,et al. Constrained Regression Estimates of Technology Effects on Fuel Economy , 1999 .
[9] Nikolaos V. Sahinidis,et al. Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..
[10] G. Judge,et al. Inequality Restrictions in Regression Analysis , 1966 .
[11] David C. Miller,et al. Learning surrogate models for simulation‐based optimization , 2014 .
[12] A. S. Korkhin. Estimation Accuracy of Linear Regression Parameters with Regard for Inequalitiy Constraints Based on a Truncated Matrix of Mean Square Errors of Parameter Estimates , 2002 .
[13] Calyampudi Radhakrishna Rao,et al. Linear Statistical Inference and its Applications , 1967 .
[14] Rembert Reemtsen,et al. Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .
[15] Timothy W. Simpson,et al. Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.
[16] Marco A. López,et al. Linear semi-infinite programming theory: An updated survey , 2002, Eur. J. Oper. Res..
[17] T. Brubaker,et al. Nonlinear Parameter Estimation , 1979 .
[18] O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .
[19] R. Reemtsen,et al. Semi‐Infinite Programming , 1998 .
[20] C. K. Liew,et al. Inequality Constrained Least-Squares Estimation , 1976 .
[21] F. John. Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .
[22] A. S. Korkhin,et al. Using a priori information in regression analysis , 2013 .
[23] Kenneth O. Kortanek,et al. Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..
[24] A. S. Korkhin,et al. Determining Sample Characteristics and Their Asymptotic Linear-Regression Properties Estimated Using Inequality Constraints , 2005 .
[25] A. S. Korkhin,et al. Certain properties of the estimates of the regression parameters under a priori constraint-inequalities , 1985 .
[26] R. Pearson,et al. Gray-box identification of block-oriented nonlinear models , 2000 .
[27] Michael Thomson,et al. Some results on the statistical properties of an inequality constrained least squares estimator in a linear model with two regressors , 1982 .
[28] Elizabeth A. Peck,et al. Introduction to Linear Regression Analysis , 2001 .