Evidence for ligand hydrolysis and Fe(III) reduction in the dissolution of goethite by desferrioxamine-B

[1]  D. W. Kim,et al.  Reactions of aqueous iron-DFOB (desferrioxamine B) complexes with flavin mononucleotide in the absence of strong iron(II) chelators , 2010 .

[2]  J. Catalano,et al.  Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH , 2010 .

[3]  A. Butler,et al.  Microbial iron acquisition: marine and terrestrial siderophores. , 2009, Chemical reviews.

[4]  B. Sulzberger,et al.  Photodissolution of lepidocrocite (γ-FeOOH) in the presence of desferrioxamine B and aerobactin , 2009 .

[5]  B. Sulzberger,et al.  ATR-FTIR spectroscopic study of the adsorption of desferrioxamine B and aerobactin to the surface of lepidocrocite (γ-FeOOH) , 2009 .

[6]  P. Persson,et al.  Molecular structures of citrate and tricarballylate adsorbed on alpha-FeOOH particles in aqueous suspensions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[7]  P. Persson,et al.  Rethinking arsenate coordination at the surface of goethite. , 2009, Chemistry.

[8]  P. Persson,et al.  Adsorption Mechanisms of EDTA at the Water−Iron Oxide Interface: Implications for Dissolution , 2009 .

[9]  B. Sulzberger,et al.  Wavelength-dependence of photoreductive dissolution of lepidocrocite (gamma-FeOOH) in the absence and presence of the siderophore DFOB. , 2009, Environmental science & technology.

[10]  T. Strathmann,et al.  Hydroxamate siderophore-promoted reactions between iron(II) and nitroaromatic groundwater contaminants , 2009 .

[11]  B. Sulzberger,et al.  Photoreductive dissolution of iron(III) (hydr)oxides in the absence and presence of organic ligands: experimental studies and kinetic modeling. , 2009, Environmental science & technology.

[12]  R. Handler,et al.  Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. , 2009, Environmental science & technology.

[13]  Shawn Domagal-Goldman,et al.  Quantum chemical study of the Fe(III)-desferrioxamine B siderophore complex—Electronic structure, vibrational frequencies, and equilibrium Fe-isotope fractionation , 2009 .

[14]  P. Maurice,et al.  Mechanisms of siderophore sorption to smectite and siderophore-enhanced release of structural Fe3+ , 2008 .

[15]  P. Persson,et al.  Highly mobile iron pool from a dissolution-readsorption process. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[16]  S. Brantley,et al.  An iron isotope signature related to electron transfer between aqueous ferrous iron and goethite , 2008 .

[17]  K. Rosso,et al.  Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal Conduction , 2008, Science.

[18]  G. Sposito,et al.  Dissolution of hausmannite (Mn3O4) in the presence of the trihydroxamate siderophore desferrioxamine B , 2007 .

[19]  P. Persson,et al.  Adsorption of monocarboxylates at the water/goethite interface : The importance of hydrogen bonding , 2007 .

[20]  R. Kretzschmar,et al.  Rate laws of steady-state and non-steady-state ligand-controlled dissolution of goethite , 2007 .

[21]  D. Wolff-Boenisch,et al.  The effect of desferrioxamine B, enterobactin, oxalic acid, and Na-alginate on the dissolution of uranyl-treatedgoethite at pH 6 and 25 °C , 2007 .

[22]  S. Kerisit,et al.  Molecular computational investigation of electron-transfer kinetics across cytochrome - Iron oxide interfaces , 2007 .

[23]  P. Bremer,et al.  Infrared spectroscopic studies of siderophore-related hydroxamic acid ligands adsorbed on titanium dioxide. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[24]  J. Hering,et al.  Sorption of Fe(II) and As(III) on goethite in single- and dual-sorbate systems , 2006 .

[25]  P. Persson,et al.  An ATR-FTIR spectroscopic study of the competitive adsorption between oxalate and malonate at the water-goethite interface. , 2006, Journal of colloid and interface science.

[26]  J. Greneche,et al.  Redox potential measurements and Mössbauer spectrometry of FeII adsorbed onto FeIII (oxyhydr)oxides , 2005 .

[27]  R. Kretzschmar,et al.  Goethite Dissolution in the Presence of Phytosiderophores: Rates, Mechanisms, and the Synergistic Effect of Oxalate , 2005, Plant and Soil.

[28]  G. Sposito,et al.  Siderophore-manganese(lll) Interactions. II. Manganite dissolution promoted by desferrioxamine B. , 2005, Environmental science & technology.

[29]  D. C. Edwards,et al.  Experimental and theoretical vibrational spectroscopy studies of acetohydroxamic acid and desferrioxamine B in aqueous solution: Effects of pH and iron complexation , 2005 .

[30]  A. L. Crumbliss,et al.  Coordination Chemistry and Redox Processes in Siderophore-Mediated Iron Transport , 2005 .

[31]  P. Persson,et al.  Adsorption of oxalate and malonate at the water-goethite interface: Molecular surface speciation from IR spectroscopy , 2005 .

[32]  B. Sulzberger,et al.  Effect of siderophores on the light-induced dissolution of colloidal iron(III) (hydr)oxides , 2005 .

[33]  M. Scherer,et al.  Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. , 2004, Environmental science & technology.

[34]  Robert M. Smith,et al.  NIST Critically Selected Stability Constants of Metal Complexes Database , 2004 .

[35]  S. Kraemer,et al.  Iron oxide dissolution and solubility in the presence of siderophores , 2004, Aquatic Sciences.

[36]  J. O’Connor,et al.  Conversion of (η5-C5H5)Co(PPh3)2 and Nitro Compounds to Mononuclear η1(N)-Nitrosoalkyl and Dinuclear μ-η1(N):η2(N,O)-Nitrosoaryl Complexes , 2003 .

[37]  G. Sposito,et al.  Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron , 2003 .

[38]  A. Barth,et al.  What vibrations tell about proteins , 2002, Quarterly Reviews of Biophysics.

[39]  G. Sposito,et al.  Temperature dependence of goethite dissolution promoted by trihydroxamate siderophores , 2002 .

[40]  G. Sposito,et al.  Steady-state dissolution kinetics of aluminum-goethite in the presence of desferrioxamine-B and oxalate ligands. , 2002, Environmental science & technology.

[41]  G. Deák,et al.  Interaction between iron(II) and hydroxamic acids: oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions. , 2001, Journal of inorganic biochemistry.

[42]  P. Maurice,et al.  Siderophore Production and Iron Reduction by Pseudomonas mendocina in Response to Iron Deprivation , 2000 .

[43]  J. Ferry,et al.  Role of bacterial siderophores in dissolution of hornblende , 2000 .

[44]  T. Kiss,et al.  Metal-binding Ability of Desferrioxamine B , 1998 .

[45]  A. Stone,et al.  Metal (Hydr)Oxide Surface-Catalyzed Hydrolysis of Chlorpyrifos-Methyl, Chlorpyrifos-Methyl Oxon, and Paraoxon , 1998 .

[46]  L. Öhman,et al.  Balance between surface complexation and surface phase transformation at the alumina/water interface , 1998 .

[47]  W. Casey,et al.  Hydroxamate Complexes in Solution and at the Goethite−Water Interface: A Cylindrical Internal Reflection Fourier Transform Infrared Spectroscopy Study , 1997 .

[48]  W. Casey,et al.  Hydroxamate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite [α-FeOOH(s)] , 1996 .

[49]  G. Boyer,et al.  Effect of Metal Ions on the Quantitative Determination of Hydroxamic Acids , 1996 .

[50]  T. Hiemstra,et al.  A surface structural approach to ion adsorption : The charge distribution (CD) model , 1996 .

[51]  Ohman,et al.  Acid/Base Properties and Phenylphosphonic Acid Complexation at the Boehmite/Water Interface , 1995, Journal of colloid and interface science.

[52]  J. Bandekar,et al.  Amide modes and protein conformation. , 1992, Biochimica et biophysica acta.

[53]  H. Torii Model calculations on the amide‐I infrared bands of globular proteins , 1992 .

[54]  J. Butler,et al.  Rates of nitrous oxide production in the oxidation of hydroxylamine by iron(III) , 1986 .

[55]  G. Furrer,et al.  The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides , 1986 .

[56]  S. Lowell Introduction to powder surface area , 1979 .

[57]  T. Yoshida,et al.  Aromatic nitroso compounds as .pi. acids in the zerovalent nickel triad metal complexes and the metal-assisted atom-transfer reactions with donor reagents , 1976 .