Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis.

A simple method to fabricate cylindrical carbon electrodes for use in capillary electrophoresis (CE) microchips is described. The electrodes were fabricated using a metallic wire coated with carbon ink. Several experimental variables were studied in order to establish the best conditions to fabricate the electrode. Finally, the electrodes were integrated in a poly(dimethylsiloxane) microchip and used for the analysis of phenolic compounds. Using the optimum conditions, the analysis of a mixture of dopamine, epinephrine, catechol, and 4-aminophenol was achieved in less than 240 s, showing good linear responses (R(2)=0.999) in the 0.1-190 microM range, and limits of detection (without the use of stacking or a decoupler) of 140 and 105 nM for dopamine and epinephrine, respectively.

[1]  Dai-Wen Pang,et al.  Microchip capillary electrophoresis with electrochemical detection. , 2002, Analytical chemistry.

[2]  M. L. Mena,et al.  Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines , 2005 .

[3]  Martin Pumera,et al.  Capillary electrophoresis-electrochemistry microfluidic system for the determination of organic peroxides. , 2002, Journal of chromatography. A.

[4]  Gang Chen,et al.  Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector. , 2004, Analytical chemistry.

[5]  Maria F. Mora,et al.  Analysis of alkyl gallates and nordihydroguaiaretic acid using plastic capillary electrophoresis - microchips , 2006 .

[6]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[7]  L. Nyholm,et al.  Deviceless decoupled electrochemical detection of catecholamines in capillary electrophoresis using gold microband array electrodes , 2002, Electrophoresis.

[8]  Charles S Henry,et al.  Analysis of natural flavonoids by microchip-micellar electrokinetic chromatography with pulsed amperometric detection. , 2005, The Analyst.

[9]  Yong-Sang Kim,et al.  Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection. , 2005, Biosensors & bioelectronics.

[10]  Q. Dong,et al.  Analysis of amino acids by capillary zone electrophoresis with electrochemical detection , 2002, Electrophoresis.

[11]  V. Dolnik,et al.  Capillary electrophoresis on microchip , 2000, Electrophoresis.

[12]  U. Bilitewski,et al.  Development of monolithic enzymatic reactors in glass microchips for the quantitative determination of enzyme substrates using the example of glucose determination via immobilized glucose oxidase , 2005, Electrophoresis.

[13]  Jicun Ren,et al.  Chemiluminescence detection for capillary electrophoresis and microchip capillary electrophoresis , 2006 .

[14]  S. Lunte,et al.  Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[15]  Guowang Xu,et al.  Determination of monoamines in urine by capillary electrophoresis with field-amplified sample stacking and amperometric detection. , 2006, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[16]  Frédéric Reymond,et al.  Polymer microfluidic chips for electrochemical and biochemical analyses , 2002, Electrophoresis.

[17]  Dhesingh Ravi Shankaran,et al.  Sol–gel derived metal dispersed ceramic–graphite composite electrode for amperometric determination of dopamine , 2003 .

[18]  S. Lunte,et al.  Fabrication and evaluation of a carbon‐based dual‐electrode detector for poly(dimethylsiloxane) electrophoresis chips , 2001, Electrophoresis.

[19]  D. Chen,et al.  Determination of urine catecholamines by capillary electrophoresis with dual-electrode amperometric detection. , 2001, Journal of chromatography. B, Biomedical sciences and applications.

[20]  S. Lunte,et al.  Microchip capillary electrophoresis/ electrochemistry , 2001, Electrophoresis.

[21]  B. Yazıcı,et al.  The effect of pH, temperature and concentration on electrooxidation of phenol. , 2005, Journal of hazardous materials.

[22]  Jing-Juan Xu,et al.  Electrochemical detection method for nonelectroactive and electroactive analytes in microchip electrophoresis. , 2004, Analytical chemistry.

[23]  Joseph Wang,et al.  Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes , 2004 .

[24]  C. Lunte,et al.  End-column amperometric detection in capillary electrophoresis: influence of separation-related parameters on the observed half-wave potential for dopamine and catechol. , 1999, Analytical chemistry.

[25]  Emanuel Carrilho,et al.  Electrokinetic control of fluid in plastified laser-printed poly(ethylene terephthalate)-toner microchips , 2005, Analytical and bioanalytical chemistry.

[26]  Martin Pumera,et al.  Towards disposable lab‐on‐a‐chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection , 2002, Electrophoresis.

[27]  Nicole E Hebert,et al.  A microchip electrophoresis device with integrated electrochemical detection: a direct comparison of constant potential amperometry and sinusoidal voltammetry. , 2003, Analytical chemistry.

[28]  M. Kovarik,et al.  Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/ electrochemistry , 2005, Electrophoresis.

[29]  Jianzhong Li,et al.  Light emitting diode-based detectors: Absorbance, fluorescence and spectroelectrochemical measurements in a planar flow-through cell , 2003 .

[30]  Chunsun Zhang,et al.  PCR microfluidic devices for DNA amplification. , 2006, Biotechnology advances.

[31]  J. Landers,et al.  Fundamentals and practice for ultrasensitive laser‐induced fluorescence detection in microanalytical systems , 2004, Electrophoresis.

[32]  Dana M. Spence,et al.  A Microchip‐Based System for Immobilizing PC 12 Cells and Amperometrically Detecting Catecholamines Released After Stimulation with Calcium , 2005 .

[33]  R. Fausto,et al.  A molecular orbital study on the conformational properties of dopamine [1,2-benzenediol-4(2-aminoethyl)]and dopamine cation , 1999 .

[34]  Hui-Ling Lee,et al.  Microchip capillary electrophoresis with amperometric detection for several carbohydrates. , 2004, Talanta.

[35]  Carlos D. Garcia,et al.  Electrochemical characterization of glassy carbon electrodes modified by resol mixtures , 2001 .

[36]  S. Lunte,et al.  Pharmaceutical and biomedical applications of capillary electrophoresis/electrochemistry , 1994, Electrophoresis.

[37]  Yongsheng Ding,et al.  Application of microchip‐CE electrophoresis to follow the degradation of phenolic acids by aquatic plants , 2006, Electrophoresis.

[38]  Ashok Mulchandani,et al.  Microchip capillary electrophoresis with electrochemical detection of thiol-containing degradation products of V-type nerve agents. , 2004, Analytical chemistry.

[39]  Heng-wu Chen,et al.  Integrated capillary electrophoresis amperometric detection microchip with replaceable microdisk working electrode. II. Influence of channel cross-sectional area on the separation and detection of dopamine and catechol. , 2005, Journal of chromatography. A.

[40]  O. Chailapakul,et al.  Microchip device for rapid screening and fingerprint identification of phenolic pollutants , 2006 .

[41]  Andrew G Ewing,et al.  Etched electrochemical detection for electrophoresis in nanometer inner diameter capillaries. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  F. Matysik Improved end-column amperometric detection for capillary electrophoresis , 1996 .

[43]  E. Hasselbrink,et al.  Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations , 2004, Electrophoresis.

[44]  E. Andersson,et al.  Method development for the enantiomeric purity determination of low concentrations of adrenaline in local anaesthetic solutions by capillary electrophoresis. , 2006, Journal of pharmaceutical and biomedical analysis.

[45]  E. Hasselbrink,et al.  Zeta potential of microfluidic substrates: 2. Data for polymers , 2004, Electrophoresis.

[46]  Hizuru Nakajima,et al.  Detection method for microchip separations , 2004, Analytical and bioanalytical chemistry.

[47]  Q. Dong,et al.  Monitoring diclofenac sodium in single human erythrocytes introduced by electroporation using capillary zone electrophoresis with electrochemical detection , 2001, Electrophoresis.

[48]  Lihua Zhang,et al.  Microchip electrophoresis-based separation of DNA. , 2003, Journal of pharmaceutical and biomedical analysis.

[49]  Charles S Henry,et al.  Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips , 2005, Electrophoresis.

[50]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[51]  Louise K. Charkoudian,et al.  Fe(III)-coordination properties of neuromelanin components: 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid. , 2006, Inorganic chemistry.

[52]  G. Rivas,et al.  Carbon nanotubes paste electrodes as new detectors for capillary electrophoresis , 2005 .

[53]  Susan M Lunte,et al.  Recent developments in amperometric detection for microchip capillary electrophoresis , 2002, Electrophoresis.

[54]  R. McCreery,et al.  Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. , 2003, Analytical chemistry.

[55]  Matthew K. Hulvey,et al.  Detecting thiols in a microchip device using micromolded carbon ink electrodes modified with cobalt phthalocyanine. , 2006, The Analyst.

[56]  David J. Fischer,et al.  Recent developments in electrochemical detection for microchip capillary electrophoresis , 2004, Electrophoresis.

[57]  E. Verpoorte Microfluidic chips for clinical and forensic analysis , 2002, Electrophoresis.

[58]  Nathaniel C. Cady,et al.  Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform , 2005 .

[59]  Joseph Wang,et al.  Electrochemical detection for microscale analytical systems: a review. , 2002, Talanta.

[60]  S. Jewett,et al.  Novel method to examine the formation of unstable 2:1 and 3:1 complexes of catecholamines and iron(III)☆ , 1997 .

[61]  Joseph Wang,et al.  Electrochemical Detection for Capillary Electrophoresis Microchips: A Review , 2005 .

[62]  G. Rivas,et al.  Capillary electrophoresis of neurotransmitters with amperometric detection at melanin-type polymer-modified carbon electrodes , 2004 .

[63]  Charles S. Henry,et al.  Coupling Capillary Electrophoresis and Pulsed Electrochemical Detection , 2005 .

[64]  E. Bosch,et al.  Prediction of the separation of phenols by capillary zone electrophoresis , 2002 .

[65]  Charles S. Henry,et al.  Comparison of Pulsed Electrochemical Detection Modes Coupled with Microchip Capillary Electrophoresis , 2005 .

[66]  Charles S Henry,et al.  Simplified current decoupler for microchip capillary electrophoresis with electrochemical and pulsed amperometric detection , 2005, Electrophoresis.

[67]  Yüksel Altun Study of Solvent Composition Effects on the Protonation Equilibria of Various Anilines by Multiple Linear Regression and Factor Analysis Applied to the Correlation Between Protonation Constants and Solvatochromic Parameters in Ethanol–Water Mixed Solvents , 2004 .

[68]  Y. Vander Heyden,et al.  Newly synthesized tetraoxa-diaza crown ether derivatives versus commercialized crown ethers in the separation of positional isomers with capillary electrophoresis. , 2006, Journal of pharmaceutical and biomedical analysis.

[69]  W. Jin,et al.  Determination of diclofenac sodium by capillary zone electrophoresis with electrochemical detection. , 2000 .

[70]  Carlos D. Garcia,et al.  Reflectometry applied to electrochemically generated phenoxy radical adsorption monitoring , 2002 .

[71]  Emanuel Carrilho,et al.  Electrophoresis microchip fabricated by a direct‐printing process with end‐channel amperometric detection , 2004, Electrophoresis.

[72]  Charles S. Henry,et al.  Enhanced determination of glucose by microchip electrophoresis with pulsed amperometric detection , 2004 .

[73]  P Belgrader,et al.  Rapid pathogen detection using a microchip PCR array instrument. , 1998, Clinical chemistry.

[74]  Gang Chen,et al.  Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. , 2006, Talanta.

[75]  Yongsheng Ding,et al.  Pulsed amperometric detection with poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips for the determination of EPA priority pollutants. , 2006, The Analyst.

[76]  W. LaCourse,et al.  Microelectrode Applications of Pulsed Electrochemical Detection , 2005 .

[77]  Yan Liu,et al.  Versatile 3-channel high-voltage power supply for microchip capillary electrophoresis. , 2003, Lab on a chip.

[78]  Charles S Henry,et al.  Simple and sensitive electrode design for microchip electrophoresis/electrochemistry. , 2004, Analytical chemistry.

[79]  L. Codognoto,et al.  Electrochemical behavior of dopamine in the presence of citrate: Reaction mechanism , 2006 .

[80]  Joseph Wang,et al.  Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection , 2005 .

[81]  C. McNeil,et al.  Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols. , 2002, Biosensors & bioelectronics.

[82]  G. Bruin,et al.  Recent developments in electrokinetically driven analysis on microfabricated devices , 2000, Electrophoresis.

[83]  Charles S Henry,et al.  Recent progress in the development of muTAS for clinical analysis. , 2003, The Analyst.