A Randomized Polynomial Kernel for Subset Feedback Vertex Set

The subset feedback vertex set problem generalizes the classical feedback vertex set problem and asks, for a given undirected graph G = (V, E), a set S ⊆ V, and an integer k, whether there exists a set X of at most k vertices such that no cycle in G − X contains a vertex of S. It was independently shown by Cygan et al. (ICALP ’11, SIDMA ’13) and Kawarabayashi and Kobayashi (JCTB ’12) that subset feedback vertex set is fixed-parameter tractable for parameter k. Cygan et al. asked whether the problem also admits a polynomial kernelization. We answer the question of Cygan et al. positively by giving a randomized polynomial kernelization for the equivalent version where S is a set of edges. In a first step we show that edge subset feedback vertex set has a randomized polynomial kernel parameterized by |S| + k with 𝓞(|S|2k)$\mathcal {O}(|S|^{2}k)$ vertices. For this we use the matroid-based tools of Kratsch and Wahlström (FOCS ’12) that for example were used to obtain a polynomial kernel for s-multiway cut. Next we present a preprocessing that reduces the given instance (G, S, k) to an equivalent instance (G′, S′, k′) where the size of S′ is bounded by 𝓞(k4)$\mathcal {O}(k^{4})$. These two results lead to a randomized polynomial kernel for subset feedback vertex set with 𝓞(k9)$\mathcal {O}(k^{9})$ vertices.

[1]  Alexander Schrijver,et al.  A Short Proof of Mader's sigma-Paths Theorem , 2001, J. Comb. Theory, Ser. B.

[2]  Joseph Naor,et al.  Approximating Minimum Subset Feedback Sets in Undirected Graphs with Applications , 2000, SIAM J. Discret. Math..

[3]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[4]  Ken-ichi Kawarabayashi,et al.  Fixed-parameter tractability for the subset feedback set problem and the S-cycle packing problem , 2012, J. Comb. Theory, Ser. B.

[5]  Hazel Perfect,et al.  Applications of Menger's graph theorem , 1968 .

[6]  Marcin Pilipczuk,et al.  Faster deterministic Feedback Vertex Set , 2013, Inf. Process. Lett..

[7]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[8]  László Lovász,et al.  Matroid matching and some applications , 1980, J. Comb. Theory, Ser. B.

[9]  Joseph Naor,et al.  An 8-approximation algorithm for the subset feedback vertex set problem , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[10]  Dániel Marx,et al.  A parameterized view on matroid optimization problems , 2009, Theor. Comput. Sci..

[11]  E. Lawler,et al.  Solving the Weighted Parity Problem for Gammoids by Reduction to Graphic Matching , 1982 .

[12]  Eva-Maria C. Hols,et al.  A Randomized Polynomial Kernel for Subset Feedback Vertex Set , 2016, STACS.

[13]  Michael R. Fellows,et al.  The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel , 2006, IWPEC.

[14]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[15]  Dieter van Melkebeek,et al.  Satisfiability Allows No Nontrivial Sparsification unless the Polynomial-Time Hierarchy Collapses , 2014, JACM.

[16]  T. Gallai Maximum-Minimum Sätze und verallgemeinerte Faktoren von Graphen , 1964 .

[17]  Saket Saurabh,et al.  Linear Time Parameterized Algorithms for Subset Feedback Vertex Set , 2018, ACM Trans. Algorithms.

[18]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[19]  Fedor V. Fomin,et al.  Efficient Computation of Representative Sets with Applications in Parameterized and Exact Algorithms , 2013, SODA.

[20]  Barry O'Sullivan,et al.  Finding small separators in linear time via treewidth reduction , 2011, TALG.

[21]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.