A Fast and Accurate Face Detector Based on Neural Networks

Detecting faces in images with complex backgrounds is a difficult task. Our approach, which obtains state of the art results, is based on a neural network model: the constrained generative model (CGM). Generative, since the goal of the learning process is to evaluate the probability that the model has generated the input data, and constrained since some counter-examples are used to increase the quality of the estimation performed by the model. To detect side view faces and to decrease the number of false alarms, a conditional mixture of networks is used. To decrease the computational time cost, a fast search algorithm is proposed. The level of performance reached, in terms of detection accuracy and processing time, allows us to apply this detector to a real world application: the indexing of images and videos.

[1]  Takeo Kanade,et al.  Picture Processing System by Computer Complex and Recognition of Human Faces , 1974 .

[2]  Robert J. Baron,et al.  Mechanisms of Human Facial Recognition , 1981, Int. J. Man Mach. Stud..

[3]  Paul W. Munro,et al.  Principal Components Analysis Of Images Via Back Propagation , 1988, Other Conferences.

[4]  Kurt Hornik,et al.  Neural networks and principal component analysis: Learning from examples without local minima , 1989, Neural Networks.

[5]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[6]  M. K. Fleming,et al.  Categorization of faces using unsupervised feature extraction , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[7]  Terrence J. Sejnowski,et al.  SEXNET: A Neural Network Identifies Sex From Human Faces , 1990, NIPS.

[8]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[9]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[10]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[11]  Emmanuel Viennet,et al.  Scene segmentation using Multiresolution Analysis and MLP , 1992 .

[12]  Emmanuel Viennet,et al.  Solving the Human Face Recognition Task using Neural Nets , 1992 .

[13]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[14]  Rama Chellappa,et al.  A feature based approach to face recognition , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  H. Martin Hunke,et al.  Locating and Tracking of Human Faces with Neural Networks , 1994 .

[17]  R. Vaillant,et al.  Original approach for the localisation of objects in images , 1994 .

[18]  David Beymer,et al.  Face recognition under varying pose , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Alex Pentland,et al.  Probabilistic visual learning for object detection , 1995, Proceedings of IEEE International Conference on Computer Vision.

[20]  Takeo Kanade,et al.  Human Face Detection in Visual Scenes , 1995, NIPS.

[21]  Alexander H. Waibel,et al.  Toward movement-invariant automatic lip-reading and speech recognition , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[22]  Michael J. Swain,et al.  WebSeer: An Image Search Engine for the World Wide Web , 1996 .

[23]  Michael S. Lew,et al.  Face detection using local maxima , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[24]  Raphaël Féraud,et al.  LISTEN: a system for locating and tracking individual speakers , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[25]  Roberto Cipolla,et al.  Detection of human faces under scale, orientation and viewpoint variations , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[26]  Harry Wechsler,et al.  Detection of human faces using decision trees , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[27]  Souheil Ben-Yacoub,et al.  Fast Object Detection using MLP and FFT , 1997 .

[28]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Raphaël Féraud,et al.  Ensemble and Modular Approaches for Face Detection: A Comparison , 1997, NIPS.

[30]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  D. Collobert,et al.  MULTRAK: a system for automatic multiperson localization and tracking in real-time , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[32]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Thomas S. Huang,et al.  Face Detection and Recognition , 1998 .

[34]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[35]  R. Féraud PCA, neural networks and estimation for face detection , 1998 .

[36]  D. Maio,et al.  Fast Face Location in Complex Backgrounds , 1998 .

[37]  Vicki Bruce,et al.  Face Recognition: From Theory to Applications , 1999 .

[38]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[39]  I. Jolliffe Principal Component Analysis , 2002 .

[40]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .