Optimization of linear segmented circular Mindlin plates for maximum fundamental frequency

This paper concerns the optimization of piecewise linear segmented circular Mindlin plates against vibration. For a given number of linear segments and plate volume, the thickness parameters and the segmental lengths are to be optimally chosen so as to maximize the fundamental frequency of free vibration. To solve this problem, an iterative optimization procedure together with the Ritz method for analysis has been used. The effects of the number of segments, transverse shear deformation and rotary inertia on the optimal design are investigated.