Simulation of ionomer membrane fatigue under mechanical and hygrothermal loading conditions

[1]  R. Rajapakse,et al.  Decay in Mechanical Properties of Catalyst Coated Membranes Subjected to Combined Chemical and Mechanical Membrane Degradation , 2015 .

[2]  Erik Kjeang,et al.  Mechanical degradation of fuel cell membranes under fatigue fracture tests , 2015 .

[3]  Erik Kjeang,et al.  Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells , 2014 .

[4]  R. Rajapakse,et al.  On the constitutive relations for catalyst coated membrane applied to in-situ fuel cell modeling , 2014 .

[5]  C. Bas,et al.  Understanding the formation of pinholes in PFSA membranes with the essential work of fracture (EWF) , 2014 .

[6]  Erik Kjeang,et al.  Macroscopic In-Situ Modeling of Chemical Membrane Degradation in Polymer Electrolyte Fuel Cells , 2014 .

[7]  J. Zu,et al.  Effect of mechanical vibrations on damage propagation in polymer electrolyte membrane fuel cells , 2013 .

[8]  Timothy J. Peckham,et al.  Selective formation of hydrogen and hydroxyl radicals by electron beam irradiation and their reactivity with perfluorosulfonated acid ionomer. , 2013, Journal of the American Chemical Society.

[9]  Ali Fatemi,et al.  Multiaxial fatigue and life prediction of elastomeric components , 2013 .

[10]  G. G. Wang,et al.  Mechanical properties of catalyst coated membranes for fuel cells , 2013 .

[11]  S. Holdcroft,et al.  Quantifying the structural changes of perfluorosulfonated acid ionomer upon reaction with hydroxyl radicals. , 2013, Journal of the American Chemical Society.

[12]  C. Cho,et al.  Thermo‐Mechanical Response of Fuel Cell Electrodes: Constitutive Model and Application in Studying the Structural Response of Polymer Electrolyte Fuel Cell , 2013 .

[13]  Y. Kitayama,et al.  Crack Formation in Membrane Electrode Assembly Under Static and Cyclic Loadings , 2013 .

[14]  Erik Kjeang,et al.  Pt Band Formation Enhances the Stability of Fuel Cell Membranes , 2013 .

[15]  Ali Fatemi,et al.  A method of predicting cyclic stress–strain curve from tensile properties for steels , 2012 .

[16]  Y. Sohn,et al.  Gas-diffusion layer's structural anisotropy induced localized instability of nafion membrane in polymer electrolyte fuel cell , 2012 .

[17]  M. Santare,et al.  An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane , 2012 .

[18]  M. Santare,et al.  Effect of Time-Dependent Material Properties on the Mechanical Behavior of PFSA Membranes Subjected to Humidity Cycling , 2012 .

[19]  M. Santare,et al.  Aspects of Fatigue Failure Mechanisms in Polymer Fuel Cell Membranes , 2011 .

[20]  Ayhan Ince,et al.  A modification of Morrow and Smith–Watson–Topper mean stress correction models , 2011 .

[21]  Ramón Zaera,et al.  Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers , 2011 .

[22]  Lorenz Gubler,et al.  Radical (HO•, H• and HOO•) Formation and Ionomer Degradation in Polymer Electrolyte Fuel Cells , 2011 .

[23]  J. C. Cross,et al.  Effect of gas diffusion layer modulus and land–groove geometry on membrane stresses in proton exchange membrane fuel cells , 2011 .

[24]  Xinyu Huang,et al.  A nonlinear viscoelastic–viscoplastic constitutive model for ionomer membranes in polymer electrolyte membrane fuel cells , 2011 .

[25]  J. O'neill,et al.  Use of mechanical tests to predict durability of polymer fuel cell membranes under humidity cycling , 2011 .

[26]  Mary C. Boyce,et al.  Hygro-thermal mechanical behavior of Nafion during constrained swelling , 2011 .

[27]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[28]  M. Boyce,et al.  Biaxial elastic–viscoplastic behavior of Nafion membranes , 2011 .

[29]  Mary C. Boyce,et al.  Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading , 2010 .

[30]  Xinyu Huang,et al.  Creep and stress-rupture of Nafion® membranes under controlled environment , 2010 .

[31]  Michael H. Santare,et al.  Constitutive response and mechanical properties of PFSA membranes in liquid water , 2010 .

[32]  Jiujun Zhang,et al.  A review of accelerated stress tests of MEA durability in PEM fuel cells , 2009 .

[33]  David A. Dillard,et al.  Characterizing the fracture resistance of proton exchange membranes , 2008 .

[34]  Jun Shen,et al.  A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies , 2008 .

[35]  Yue Zou,et al.  A time and hydration dependent viscoplastic model for polyelectrolyte membranes in fuel cells , 2008 .

[36]  Michael H. Santare,et al.  Mechanical properties of a reinforced composite polymer electrolyte membrane and its simulated performance in PEM fuel cells , 2008 .

[37]  John P. Kopasz,et al.  DOE Fuel Cell Program: Durability Technical Targets and Testing Protocols , 2007 .

[38]  W. B. Johnson,et al.  Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses , 2007 .

[39]  Fang Wang,et al.  A degradation study of Nafion proton exchange membrane of PEM fuel cells , 2007 .

[40]  K. Reifsnider,et al.  Mechanical Endurance of Polymer Electrolyte Membrane and PEM Fuel Cell Durability , 2006 .

[41]  Michael H. Santare,et al.  An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane , 2006 .

[42]  Sean B. Leen,et al.  Finite element, critical-plane, fatigue life prediction of simple and complex contact configurations , 2005 .

[43]  Shankar Mall,et al.  An evaluation of parameters for predicting fretting fatigue crack initiation , 2000 .