Slowing quantum decoherence of oscillators by hybrid processing

[1]  E. Rico,et al.  Quantum Rabi dynamics of trapped atoms far in the deep strong coupling regime , 2021, Nature Communications.

[2]  R. Filip,et al.  Universal Unitary Transfer of Continuous-Variable Quantum States into a Few Qubits. , 2021, Physical review letters.

[3]  Connor T. Hann,et al.  Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes , 2020, PRX Quantum.

[4]  G. Rempe,et al.  Quantum Teleportation between Remote Qubit Memories with Only a Single Photon as a Resource. , 2021, Physical review letters.

[5]  Kyungjoo Noh Quantum Computation and Communication in Bosonic Systems , 2021, 2103.09445.

[6]  V. Manucharyan,et al.  Millisecond Coherence in a Superconducting Qubit. , 2021, Physical review letters.

[7]  A. Clerk,et al.  Dissipative Stabilization of Squeezing Beyond 3 dB in a Microwave Mode , 2021, 2102.02863.

[8]  Mile Gu,et al.  Single ion qubit with estimated coherence time exceeding one hour , 2021, Nature communications.

[9]  Xueshi Guo,et al.  Deterministic multi-mode gates on a scalable photonic quantum computing platform , 2020, Nature Physics.

[10]  S. Ashhab,et al.  Nonclassicality of open circuit QED systems in the deep-strong coupling regime , 2020, New Journal of Physics.

[11]  S. Girvin,et al.  Stabilization and operation of a Kerr-cat qubit , 2020, Nature.

[12]  S. Reich,et al.  Deep strong light–matter coupling in plasmonic nanoparticle crystals , 2020, Nature.

[13]  P. Grangier,et al.  Production and applications of non-Gaussian quantum states of light , 2020, 2006.16985.

[14]  B. Terhal,et al.  Towards scalable bosonic quantum error correction , 2020, Quantum Science and Technology.

[15]  Ulrik Lund Andersen,et al.  Deterministic generation of a four-component optical cat state. , 2019, Optics letters.

[16]  Nicolas C. Menicucci,et al.  Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes , 2019, Physical Review A.

[17]  R. Filip,et al.  Strong mechanical squeezing for a levitated particle by coherent scattering , 2019, Physical Review Research.

[18]  Kyungjoo Noh,et al.  Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code , 2019, Physical Review A.

[19]  L. Frunzio,et al.  Quantum error correction of a qubit encoded in grid states of an oscillator , 2019, Nature.

[20]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[21]  S. Girvin,et al.  Bias-preserving gates with stabilized cat qubits , 2019, Science Advances.

[22]  M. Amanti,et al.  Generation of a time-frequency grid state with integrated biphoton frequency combs , 2019, Physical Review A.

[23]  Liang Jiang,et al.  Encoding an Oscillator into Many Oscillators. , 2019, Physical review letters.

[24]  R. Filip,et al.  Measurement-free preparation of grid states , 2019, 1912.12645.

[25]  Mats Eriksson,et al.  Quantum computing with semiconductor spins , 2019, Physics Today.

[26]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[27]  V. Negnevitsky,et al.  Encoding a qubit in a trapped-ion mechanical oscillator , 2018, Nature.

[28]  F. Nori,et al.  Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime , 2019 .

[29]  Franco Nori,et al.  Ultrastrong coupling between light and matter , 2018, Nature Reviews Physics.

[30]  M. Devoret,et al.  Cavity Attenuators for Superconducting Qubits , 2018, Physical Review Applied.

[31]  Ling Hu,et al.  Quantum error correction and universal gate set operation on a binomial bosonic logical qubit , 2018, Nature Physics.

[32]  E. Rico,et al.  Ultrastrong coupling regimes of light-matter interaction , 2018, Reviews of Modern Physics.

[33]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[34]  A. Blais,et al.  Parametric amplification and squeezing with an ac- and dc-voltage biased superconducting junction , 2018, Physical Review Applied.

[35]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[36]  P. Drummond,et al.  Creation, storage, and retrieval of an optomechanical cat state , 2018, Physical Review A.

[37]  B. Huard,et al.  Demonstration of an Effective Ultrastrong Coupling between Two Oscillators. , 2018, Physical review letters.

[38]  R. A. Brewster,et al.  Reduced decoherence using squeezing, amplification, and antisqueezing , 2018, Physical Review A.

[39]  L. Frunzio,et al.  Fault-tolerant detection of a quantum error , 2018, Science.

[40]  S. Ashhab,et al.  Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime. , 2017, Physical review letters.

[41]  Victor V. Albert,et al.  Performance and structure of single-mode bosonic codes , 2017, 1708.05010.

[42]  R. Filip,et al.  Slowing Quantum Decoherence by Squeezing in Phase Space. , 2017, Physical review letters.

[43]  Enrique Solano,et al.  Quantum Simulation Of The Quantum Rabi Model In A Trapped Ion , 2017, 1711.00582.

[44]  E. Laird,et al.  Displacemon electromechanics: how to detect quantum interference in a nanomechanical resonator , 2017, 1710.01920.

[45]  M. Weides,et al.  Analog quantum simulation of the Rabi model in the ultra-strong coupling regime , 2016, Nature Communications.

[46]  V. Negnevitsky,et al.  Sequential modular position and momentum measurements of a trapped ion mechanical oscillator , 2017, 1709.10469.

[47]  D. Schuh,et al.  Terahertz Light-Matter Interaction beyond Unity Coupling Strength. , 2017, Nano letters.

[48]  R. Filip,et al.  Deterministic nonlinear phase gates induced by a single qubit , 2017, 1706.09660.

[49]  Liang Jiang,et al.  Controlled release of multiphoton quantum states from a microwave cavity memory , 2016, Nature Physics.

[50]  N. Langford,et al.  Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling , 2016, Nature Communications.

[51]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[52]  R. Filip,et al.  Finite approximation of unitary operators for conditional analog simulators , 2016 .

[53]  Jing Yan Haw,et al.  Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states , 2016, Nature Communications.

[54]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[55]  Shiro Saito,et al.  Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime , 2016, Nature Physics.

[56]  Liang Jiang,et al.  New class of quantum error-correcting codes for a bosonic mode , 2016, 1602.00008.

[57]  Yvonne Y Gao,et al.  A Schrödinger cat living in two boxes , 2016, Science.

[58]  U. Andersen,et al.  Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics. , 2016, Physical review letters.

[59]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[60]  J. P. Home,et al.  Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets. , 2015, Physical review letters.

[61]  F. Nori,et al.  Generation of a macroscopic entangled coherent state using quantum memories in circuit QED , 2014, Scientific Reports.

[62]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[63]  A. Clerk,et al.  Quantum squeezing of motion in a mechanical resonator , 2015, Science.

[64]  Radim Filip,et al.  Decoherence control by quantum decoherence itself , 2014, Scientific Reports.

[65]  Victor V. Albert,et al.  Dynamically protected cat-qubits: a new paradigm for universal quantum computation , 2013, 1312.2017.

[66]  A. Tipsmark,et al.  Generation of picosecond pulsed coherent state superpositions , 2013, 1311.0943.

[67]  S. Girvin,et al.  Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States , 2013, Science.

[68]  R. Filip,et al.  Gaussian error correction of quantum states in a correlated noisy channel. , 2013, Physical review letters.

[69]  D. Wineland Nobel Lecture: Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[70]  R. Filip Gaussian quantum adaptation of non-Gaussian states for a lossy channel , 2013 .

[71]  Serge Haroche,et al.  Controlling photons in a box and exploring the quantum to classical boundary , 2013, Angewandte Chemie.

[72]  David J. Wineland,et al.  Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[73]  C. Arenz,et al.  Generation of two-mode entangled states by quantum reservoir engineering , 2013, 1303.1977.

[74]  Mazyar Mirrahimi,et al.  Hardware-efficient autonomous quantum memory protection. , 2012, Physical review letters.

[75]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[76]  P. Rouchon,et al.  Stabilization of nonclassical states of one- and two-mode radiation fields by reservoir engineering , 2012, 1203.0929.

[77]  B. Sanders Review of entangled coherent states , 2011, 1112.1778.

[78]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[79]  R. Filip,et al.  Probabilistic Cloning of Coherent States without a Phase Reference , 2011, 1108.4241.

[80]  Timothy C. Ralph,et al.  Quantum error correction of continuous-variable states against Gaussian noise , 2011 .

[81]  M. Ježek,et al.  Experimental demonstration of a Hadamard gate for coherent state qubits , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[82]  William J Munro,et al.  Quantum metrology with entangled coherent states. , 2011, Physical review letters.

[83]  Gerd Leuchs,et al.  Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code , 2010, 1006.3941.

[84]  Petr Marek,et al.  Elementary gates for quantum information with superposed coherent states , 2010, 1006.3644.

[85]  Sae Woo Nam,et al.  Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum , 2010, 1004.2727.

[86]  Masahide Sasaki,et al.  Optical continuous-variable qubit. , 2010, Physical review letters.

[87]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[88]  Philippe Grangier,et al.  Preparation of non-local superpositions of quasi-classical light states , 2009 .

[89]  Samuel L. Braunstein,et al.  Quantum error correction beyond qubits , 2008, 0811.3734.

[90]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[91]  F. Gaitan Quantum Error Correction and Fault Tolerant Quantum Computing , 2008 .

[92]  T. Ralph,et al.  Fault-tolerant linear optical quantum computing with small-amplitude coherent States. , 2007, Physical review letters.

[93]  T. Spiller,et al.  Hybrid quantum computation in quantum optics , 2007, quant-ph/0701057.

[94]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[95]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[96]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical review letters.

[97]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[98]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[99]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[100]  Boris B. Blinov,et al.  Quantum Computing with Trapped Ion Hyperfine Qubits , 2004, Quantum Inf. Process..

[101]  F. Illuminati,et al.  Minimum decoherence cat-like states in Gaussian noisy channels , 2003, quant-ph/0310005.

[102]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[103]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[104]  M. S. Kim,et al.  Efficient quantum computation using coherent states , 2001, quant-ph/0109077.

[105]  Wojciech Hubert Zurek,et al.  Sub-Planck structure in phase space and its relevance for quantum decoherence , 2001, Nature.

[106]  R. Filip Amplification of Schrödinger-cat state in a degenerate optical parametric amplifier , 2001 .

[107]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[108]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[109]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[110]  Pete Smith The current state of play , 1982, Behavioral and Brain Sciences.

[111]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .