Imprinted antibody responses against SARS-CoV-2 Omicron sublineages

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5, and that breakthrough infections, but not vaccination alone, induce neutralizing antibodies in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1, BA.2, and BA.4/5 receptor-binding domains, whereas Omicron primary infections elicit B cells of narrow specificity up to 6 months after infection. Although most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant–neutralizing antibody that is a strong candidate for clinical development. Description Defending against Omicron The Omicron BA.1 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2021 and quickly became dominant, in part because of a large number of mutations that allowed escape from existing antibodies. New infection waves have come from other Omicron sublineages. Park et al. found that either a vaccination booster or a breakthrough infection elicits neutralization activity against the Omicron variants, but only a breakthrough infection induces an antibody response in the nasal mucosa, which might give better protection against transmission. Testing a panel of antibodies, the authors showed that the antibody S2X324 potently neutralizes all SARS-CoV-2 variants tested, making it a candidate for therapeutic development. A cryo–electron microscopy structure shows how this antibody accommodates Omicron-specific mutations to block binding of the viral spike protein to the human ACE2 receptor across the variants. —VV Vaccine boosters or breakthrough infections elicit plasma-neutralizing activity against Omicron variants.

[1]  J. Shendure,et al.  Genomic surveillance of SARS-CoV-2 Omicron variants on a university campus , 2022, Nature Communications.

[2]  B. Pulendran,et al.  Durable protection against the SARS-CoV-2 Omicron variant is induced by an adjuvanted subunit vaccine , 2022, Science Translational Medicine.

[3]  A. Bertoletti,et al.  SARS-CoV-2 breakthrough infection in vaccinees induces virus-specific nasal-resident CD8+ and CD4+ T cells of broad specificity , 2022, The Journal of experimental medicine.

[4]  R. Webby,et al.  Plaque-neutralizing antibody to BA.2.12.1, BA.4 and BA.5 in individuals with three doses of BioNTech or CoronaVac vaccines, natural infection and breakthrough infection , 2022, Journal of Clinical Virology.

[5]  O. Schwartz,et al.  Duration of BA.5 neutralization in sera and nasal swabs from SARS-CoV-2 vaccinated individuals, with or without omicron breakthrough infection , 2022, Med.

[6]  Aaron J. Johnson,et al.  Respiratory mucosal immunity against SARS-CoV-2 following mRNA vaccination , 2022, Science Immunology.

[7]  A. Sette,et al.  Omicron spike function and neutralizing activity elicited by a comprehensive panel of vaccines , 2022, Science.

[8]  S. Hoehl,et al.  Omicron BA.1 breakthrough infection drives cross-variant neutralization and memory B cell formation against conserved epitopes , 2022, Science Immunology.

[9]  E. Dora,et al.  Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model , 2022, Science Translational Medicine.

[10]  B. Haynes,et al.  Cryo-EM structures of SARS-CoV-2 Omicron BA.2 spike , 2022, bioRxiv.

[11]  J. Dye,et al.  LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants , 2022, Cell Reports.

[12]  D. Fremont,et al.  Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains , 2022, Nature Communications.

[13]  L. Madoff,et al.  Characterization of immune responses in fully vaccinated individuals following breakthrough infection with the SARS-CoV-2 delta variant , 2022, Science Translational Medicine.

[14]  J. Mascola,et al.  mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron , 2022, Cell.

[15]  S. Richardson,et al.  SARS-CoV-2 Omicron triggers cross-reactive neutralization and Fc effector functions in previously vaccinated, but not unvaccinated, individuals , 2022, Cell Host & Microbe.

[16]  A. Kaneda,et al.  Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant , 2022, Nature.

[17]  D. Weissman,et al.  Breadth of SARS-CoV-2 Neutralization and Protection Induced by a Nanoparticle Vaccine , 2022, bioRxiv.

[18]  S. Schrag,et al.  Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. , 2022, JAMA.

[19]  K. Dhama,et al.  Emergence of Omicron third lineage BA.3 and its importance , 2022, Journal of medical virology.

[20]  K. Bruxvoort,et al.  Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants , 2022, Nature Medicine.

[21]  J. Bloom,et al.  Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry , 2022, Science.

[22]  A. Walls,et al.  SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses , 2022, Cell.

[23]  Christina C. Chang,et al.  mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant , 2022, Cell.

[24]  F. Dentali,et al.  Mucosal immune response in BNT162b2 COVID-19 vaccine recipients , 2021, eBioMedicine.

[25]  A. Walls,et al.  Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement , 2021, bioRxiv.

[26]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[27]  M. Kraemer,et al.  Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa , 2021, Nature.

[28]  L. Trautmann,et al.  Antibody Response and Variant Cross-Neutralization After SARS-CoV-2 Breakthrough Infection. , 2021, JAMA.

[29]  Liyuan Liu,et al.  Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 , 2021, Nature.

[30]  A. Telenti,et al.  Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift , 2021, Nature.

[31]  A. Iwasaki,et al.  Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA , 2021, Science Immunology.

[32]  R. J. Edwards,et al.  A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice , 2021, Science Translational Medicine.

[33]  Chaim A. Schramm,et al.  Protection against SARS-CoV-2 Beta variant in mRNA-1273 vaccine–boosted nonhuman primates , 2021, Science.

[34]  M. Diamond,et al.  Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail , 2021, Nature Microbiology.

[35]  B. Pulendran,et al.  Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines , 2021, Cell.

[36]  S. Bhatt,et al.  SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion , 2021, Nature.

[37]  A. Telenti,et al.  Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies , 2021, Nature.

[38]  A. Walls,et al.  Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants , 2021, bioRxiv.

[39]  M. Beltramello,et al.  Broad betacoronavirus neutralization by a stem helix–specific human antibody , 2021, Science.

[40]  M. Beltramello,et al.  Broad sarbecovirus neutralization by a human monoclonal antibody , 2021, Nature.

[41]  M. Beltramello,et al.  SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape , 2021, Nature.

[42]  S. Crotty Hybrid immunity , 2021, Science.

[43]  C. Rice,et al.  Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection , 2021, Nature.

[44]  J. Bloom,et al.  Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection , 2021, Science Translational Medicine.

[45]  L. Stamatatos,et al.  mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection , 2021, Science.

[46]  D. Fremont,et al.  A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques , 2021, Cell Reports Medicine.

[47]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, Cell.

[48]  D. Weissman,et al.  Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice , 2021, Science.

[49]  M. Beltramello,et al.  Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity , 2021, Cell.

[50]  Lisa E. Gralinski,et al.  Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody , 2021, Science.

[51]  M. Nussenzweig,et al.  Evolution of antibody immunity to SARS-CoV-2 , 2021, Nature.

[52]  M. Nussenzweig,et al.  Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice , 2020, Science.

[53]  M. Nussenzweig,et al.  Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo , 2020, The Journal of experimental medicine.

[54]  J. Matthijnssens,et al.  A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate , 2020, Nature.

[55]  David J. Fleet,et al.  Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. , 2020, Nature methods.

[56]  P. Maes,et al.  STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters , 2020, Nature Communications.

[57]  B. Weynand,et al.  Favipiravir at high doses has potent antiviral activity in SARS-CoV-2−infected hamsters, whereas hydroxychloroquine lacks activity , 2020, Proceedings of the National Academy of Sciences.

[58]  M. Beltramello,et al.  Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms , 2020, Science.

[59]  M. Beltramello,et al.  Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology , 2020, Cell.

[60]  J. Mascola,et al.  Identification and Structure of a Multidonor Class of Head-Directed Influenza-Neutralizing Antibodies Reveal the Mechanism for Its Recurrent Elicitation. , 2020, Cell reports.

[61]  M. Chen,et al.  A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction , 2020, Nature Biotechnology.

[62]  D. Fremont,et al.  Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2 , 2020, Cell Host & Microbe.

[63]  J. Englund,et al.  Comparison of Unsupervised Home Self-collected Midnasal Swabs With Clinician-Collected Nasopharyngeal Swabs for Detection of SARS-CoV-2 Infection , 2020, JAMA network open.

[64]  Amalio Telenti,et al.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody , 2020, Nature.

[65]  J. Bloom,et al.  Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays , 2020, bioRxiv.

[66]  Linqi Zhang,et al.  Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor , 2020, Nature.

[67]  A. Walls,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[68]  Dimitry Tegunov,et al.  Real-time cryo–EM data pre-processing with Warp , 2019, Nature Methods.

[69]  A. Walls,et al.  Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion , 2019, Cell.

[70]  Jared Adolf-Bryfogle,et al.  Automatically Fixing Errors in Glycoprotein Structures with Rosetta , 2018, Structure.

[71]  Daniel R. Roe,et al.  Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data , 2018, J. Comput. Chem..

[72]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[73]  James O. Lloyd-Smith,et al.  Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting , 2016, Science.

[74]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[75]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[76]  J. Skehel,et al.  A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1 and Group 2 Influenza A Hemagglutinins , 2011, Science.

[77]  J. Yewdell,et al.  Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection , 2011, The Journal of experimental medicine.

[78]  D. Jarrossay,et al.  Clonal dissection of the human memory B‐cell repertoire following infection and vaccination , 2009, European journal of immunology.

[79]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[80]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[81]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[82]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[83]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[84]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[85]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[86]  L. Reed,et al.  A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS , 1938 .