Hyper-Heuristics: Theory and Applications

[1]  Ender Özcan,et al.  Automated generation of constructive ordering heuristics for educational timetabling , 2019, Ann. Oper. Res..

[2]  Nelishia Pillay,et al.  Comparison of a genetic algorithm to grammatical evolution for automated design of genetic programming classification algorithms , 2018, Expert Syst. Appl..

[3]  Chee Peng Lim,et al.  Automatic design of hyper-heuristic based on reinforcement learning , 2018, Inf. Sci..

[4]  Gisele L. Pappa,et al.  H3AD: A hybrid hyper-heuristic for algorithm design , 2017, Inf. Sci..

[5]  Edmund K. Burke,et al.  A methodology for determining an effective subset of heuristics in selection hyper-heuristics , 2017, Eur. J. Oper. Res..

[6]  Zili Zhang,et al.  Automated heuristic design using genetic programming hyper-heuristic for uncertain capacitated arc routing problem , 2017, GECCO.

[7]  Robert Ivor John,et al.  Learning heuristic selection using a Time Delay Neural Network for Open Vehicle Routing , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[8]  Aurora Trinidad Ramirez Pozo,et al.  Automated design of hyper-heuristics components to solve the PSP problem with HP model , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[9]  Nelishia Pillay,et al.  EvoHyp - a Java toolkit for evolutionary algorithm hyper-heuristics , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[10]  Mengjie Zhang,et al.  Evolving heuristics for Dynamic Vehicle Routing with Time Windows using genetic programming , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[11]  Emma Hart,et al.  A Combined Generative and Selective Hyper-heuristic for the Vehicle Routing Problem , 2016, GECCO.

[12]  David J. Walker,et al.  Multi-objective Optimisation with a Sequence-based Selection Hyper-heuristic , 2016, GECCO.

[13]  Yi Mei,et al.  A comprehensive analysis on reusability of GP-evolved job shop dispatching rules , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[14]  Nelishia Pillay,et al.  Evolving construction heuristics for the curriculum based university course timetabling problem , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[15]  Gabriela Ochoa,et al.  Grammar-based generation of variable-selection heuristics for constraint satisfaction problems , 2016, Genetic Programming and Evolvable Machines.

[16]  Ben Paechter,et al.  Hybridisation of Evolutionary Algorithms Through Hyper-heuristics for Global Continuous Optimisation , 2016, LION.

[17]  Ender Özcan,et al.  A tensor based hyper-heuristic for nurse rostering , 2016, Knowl. Based Syst..

[18]  Ikou Kaku,et al.  A Hybrid Evolutionary Hyper-Heuristic Approach for Intercell Scheduling Considering Transportation Capacity , 2016, IEEE Transactions on Automation Science and Engineering.

[19]  Ender Özcan,et al.  An iterated multi-stage selection hyper-heuristic , 2016, Eur. J. Oper. Res..

[20]  Nelishia Pillay,et al.  A review of hyper-heuristics for educational timetabling , 2016, Ann. Oper. Res..

[21]  Gabriela Ochoa,et al.  Deconstructing the Big Valley Search Space Hypothesis , 2016, EvoCOP.

[22]  Mengjie Zhang,et al.  Automated Design of Production Scheduling Heuristics: A Review , 2016, IEEE Transactions on Evolutionary Computation.

[23]  Richard F. Hartl,et al.  A survey on dynamic and stochastic vehicle routing problems , 2016 .

[24]  Richard A. Gonçalves,et al.  An Ant Colony based Hyper-Heuristic Approach for the Set Covering Problem , 2015, DCAI 2015.

[25]  Victor Parada,et al.  Automatic design of algorithms for optimization problems , 2015, 2015 Latin America Congress on Computational Intelligence (LA-CCI).

[26]  Edward Keedwell,et al.  Markov Chain Selection Hyper-heuristic for the Optimisation of Constrained Magic Squares , 2015 .

[27]  Graham Kendall,et al.  Population based Monte Carlo tree search hyper-heuristic for combinatorial optimization problems , 2015, Inf. Sci..

[28]  Ender Özcan,et al.  Solving high school timetabling problems worldwide using selection hyper-heuristics , 2015, Expert Syst. Appl..

[29]  Ed Keedwell,et al.  A Sequence-based Selection Hyper-heuristic Utilising a Hidden Markov Model , 2015, GECCO.

[30]  Julian Francis Miller,et al.  Generating Human-readable Algorithms for the Travelling Salesman Problem using Hyper-Heuristics , 2015, GECCO.

[31]  Jirí Kubalík,et al.  Selection Hyper-Heuristic Using a Portfolio of Derivative Heuristics , 2015, GECCO.

[32]  Daniel R. Tauritz,et al.  A Comparison of Genetic Programming Variants for Hyper-Heuristics , 2015, GECCO.

[33]  Ana Madureira,et al.  Q-learning based hyper-heuristic for scheduling system self-parameterization , 2015, 2015 10th Iberian Conference on Information Systems and Technologies (CISTI).

[34]  Bernd Scholz-Reiter,et al.  Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations , 2015, Evolutionary Computation.

[35]  Graham Kendall,et al.  Automatic Design of a Hyper-Heuristic Framework With Gene Expression Programming for Combinatorial Optimization Problems , 2015, IEEE Transactions on Evolutionary Computation.

[36]  G. Kendall,et al.  Hybridising heuristics within an estimation distribution algorithm for examination timetabling , 2015, Applied Intelligence.

[37]  Nasser R. Sabar,et al.  A math-hyper-heuristic approach for large-scale vehicle routing problems with time windows , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[38]  Myra B. Cohen,et al.  Learning Combinatorial Interaction Test Generation Strategies Using Hyperheuristic Search , 2015, 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.

[39]  Nelishia Pillay,et al.  A genetic algorithm selection perturbative hyper-heuristic for solving the school timetabling problem , 2015 .

[40]  Ender Özcan,et al.  A tensor-based selection hyper-heuristic for cross-domain heuristic search , 2015, Inf. Sci..

[41]  Ajith Abraham,et al.  A hyper-heuristic approach for resource provisioning-based scheduling in grid environment , 2015, The Journal of Supercomputing.

[42]  Graham Kendall,et al.  Choice function based hyper-heuristics for multi-objective optimization , 2015, Appl. Soft Comput..

[43]  Yves Deville,et al.  A Multistage Stochastic Programming Approach to the Dynamic and Stochastic VRPTW , 2015, CPAIOR.

[44]  Ender Özcan,et al.  An apprenticeship learning hyper-heuristic for vehicle routing in HyFlex , 2014, 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS).

[45]  Ender Özcan,et al.  A genetic programming hyper-heuristic for the multidimensional knapsack problem , 2014, Kybernetes.

[46]  Gabriela Ochoa,et al.  A unified hyper-heuristic framework for solving bin packing problems , 2014, Expert Syst. Appl..

[47]  Graham Kendall,et al.  Searching the Hyper-heuristic Design Space , 2014, Cognitive Computation.

[48]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[49]  Graham Kendall,et al.  Grammatical Evolution Hyper-Heuristic for Combinatorial Optimization Problems , 2013, IEEE Transactions on Evolutionary Computation.

[50]  Emma Hart,et al.  Generating single and multiple cooperative heuristics for the one dimensional bin packing problem using a single node genetic programming island model , 2013, GECCO '13.

[51]  Jirí Kubalík,et al.  Evolutionary hyperheuristic for capacitated vehicle routing problem , 2013, GECCO.

[52]  Nuno Lourenço,et al.  The importance of the learning conditions in hyper-heuristics , 2013, GECCO '13.

[53]  Patrick De Causmaecker,et al.  An investigation on the generality level of selection hyper-heuristics under different empirical conditions , 2013, Appl. Soft Comput..

[54]  K. Verbeeck,et al.  A new hyper-heuristic as a general problem solver: an implementation in HyFlex , 2013, J. Sched..

[55]  Ender Özcan,et al.  Generation of VNS Components with Grammatical Evolution for Vehicle Routing , 2013, EuroGP.

[56]  Michel Gendreau,et al.  A review of dynamic vehicle routing problems , 2013, Eur. J. Oper. Res..

[57]  Per Kristian Lehre,et al.  A runtime analysis of simple hyper-heuristics: to mix or not to mix operators , 2013, FOGA XII '13.

[58]  Ke Tang,et al.  A developmental solution to (dynamic) capacitated arc routing problems using genetic programming , 2012, GECCO '12.

[59]  Alex Alves Freitas,et al.  A hyper-heuristic evolutionary algorithm for automatically designing decision-tree algorithms , 2012, GECCO '12.

[60]  Graham Kendall,et al.  A graph coloring constructive hyper-heuristic for examination timetabling problems , 2012, Applied Intelligence.

[61]  Li-Chen Fu,et al.  A VNS-based hyper-heuristic with adaptive computational budget of local search , 2012, 2012 IEEE Congress on Evolutionary Computation.

[62]  Peter Demeester,et al.  One hyper-heuristic approach to two timetabling problems in health care , 2012, J. Heuristics.

[63]  Patrick De Causmaecker,et al.  A hyperheuristic approach to examination timetabling problems: benchmarks and a new problem from practice , 2012, J. Sched..

[64]  Michel Gendreau,et al.  Vehicle Routing and Adaptive Iterated Local Search within the HyFlex Hyper-heuristic Framework , 2012, LION.

[65]  Chi Fai Cheung,et al.  A Hyper-Heuristic Inspired by Pearl Hunting , 2012, LION.

[66]  Nelishia Pillay,et al.  Evolving hyper-heuristics for the uncapacitated examination timetabling problem , 2012, J. Oper. Res. Soc..

[67]  Patrick De Causmaecker,et al.  An adaptive hyper-heuristic for CHeSC 2011 , 2011 .

[68]  Sanja Petrovic,et al.  HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search , 2011, EvoCOP.

[69]  Mark Johnston,et al.  A genetic programming based hyper-heuristic approach for combinatorial optimisation , 2011, GECCO '11.

[70]  Ender Özcan,et al.  Policy matrix evolution for generation of heuristics , 2011, GECCO '11.

[71]  A. Sima Etaner-Uyar,et al.  An Investigation of Selection Hyper-heuristics in Dynamic Environments , 2011, EvoApplications.

[72]  Edmund K. Burke,et al.  Integrating neural networks and logistic regression to underpin hyper-heuristic search , 2011, Knowl. Based Syst..

[73]  Patrick De Causmaecker,et al.  A categorisation of nurse rostering problems , 2011, J. Sched..

[74]  Sanja Petrovic,et al.  The Cross-Domain Heuristic Search Challenge - An International Research Competition , 2011, LION.

[75]  Patrick De Causmaecker,et al.  The first international nurse rostering competition 2010 , 2010, Ann. Oper. Res..

[76]  David Meignan,et al.  Coalition-based metaheuristic: a self-adaptive metaheuristic using reinforcement learning and mimetism , 2010, J. Heuristics.

[77]  María Cristina Riff,et al.  DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic , 2010, J. Heuristics.

[78]  Sanja Petrovic,et al.  A new dispatching rule based genetic algorithm for the multi-objective job shop problem , 2010, J. Heuristics.

[79]  Sanja Petrovic,et al.  Hybrid variable neighbourhood approaches to university exam timetabling , 2010, Eur. J. Oper. Res..

[80]  Peter A. Whigham,et al.  Grammar-based Genetic Programming: a survey , 2010, Genetic Programming and Evolvable Machines.

[81]  Peter Ross,et al.  Generalized hyper-heuristics for solving 2D Regular and Irregular Packing Problems , 2010, Ann. Oper. Res..

[82]  Edmund K. Burke,et al.  A shift sequence based approach for nurse scheduling and a new benchmark dataset , 2010, J. Heuristics.

[83]  Graham Kendall,et al.  A Hybrid Evolutionary Approach to the Nurse Rostering Problem , 2010, IEEE Transactions on Evolutionary Computation.

[84]  Matthew R. Hyde A genetic programming hyper-heuristic approach to automated packing , 2010 .

[85]  Patrick De Causmaecker,et al.  Hyper-heuristics with a dynamic heuristic set for the home care scheduling problem , 2010, IEEE Congress on Evolutionary Computation.

[86]  Wolfgang Banzhaf,et al.  An informed genetic algorithm for the examination timetabling problem , 2010, Appl. Soft Comput..

[87]  Edmund K. Burke,et al.  Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems , 2009, Eur. J. Oper. Res..

[88]  Riccardo Poli,et al.  Evolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework , 2009, Memetic Comput..

[89]  Wolfgang Banzhaf,et al.  A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem , 2009, Eur. J. Oper. Res..

[90]  Edmund K. Burke,et al.  Analyzing the landscape of a graph based hyper-heuristic for timetabling problems , 2009, GECCO.

[91]  Riccardo Poli,et al.  There Is a Free Lunch for Hyper-Heuristics, Genetic Programming and Computer Scientists , 2009, EuroGP.

[92]  Hishammuddin Asmuni,et al.  An investigation of fuzzy multiple heuristic orderings in the construction of university examination timetables , 2009, Comput. Oper. Res..

[93]  Edmund K. Burke,et al.  A survey of search methodologies and automated system development for examination timetabling , 2009, J. Sched..

[94]  Peter Ross,et al.  Hyper-heuristics for the dynamic variable ordering in constraint satisfaction problems , 2008, GECCO '08.

[95]  Riccardo Poli,et al.  Self-adaptive hyperheuristic and greedy search , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[96]  Alex S. Fukunaga,et al.  Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.

[97]  Riccardo Poli,et al.  Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic Framework , 2007, Artificial Evolution.

[98]  David Pisinger,et al.  A general heuristic for vehicle routing problems , 2007, Comput. Oper. Res..

[99]  Graham Kendall,et al.  Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one , 2007, GECCO '07.

[100]  Graham Kendall,et al.  An Ant Based Hyper-heuristic for the Travelling Tournament Problem , 2007, 2007 IEEE Symposium on Computational Intelligence in Scheduling.

[101]  Uwe Aickelin,et al.  An estimation of distribution algorithm for nurse scheduling , 2007, Ann. Oper. Res..

[102]  Sanja Petrovic,et al.  Selecting and weighting features using a genetic algorithm in a case-based reasoning approach to personnel rostering , 2006, Eur. J. Oper. Res..

[103]  Ender Özcan,et al.  An Experimental Study on Hyper-heuristics and Exam Timetabling , 2006, PATAT.

[104]  Hugo Terashima-Marín,et al.  A GA-based method to produce generalized hyper-heuristics for the 2D-regular cutting stock problem , 2006, GECCO.

[105]  Sanja Petrovic,et al.  Case-based heuristic selection for timetabling problems , 2006, J. Sched..

[106]  José R. Correa,et al.  Bin Packing in Multiple Dimensions: Inapproximability Results and Approximation Schemes , 2006, Math. Oper. Res..

[107]  Jörg Homberger,et al.  A two-phase hybrid metaheuristic for the vehicle routing problem with time windows , 2005, Eur. J. Oper. Res..

[108]  Michel Gendreau,et al.  Vehicle Routing Problem with Time Windows, Part II: Metaheuristics , 2005, Transp. Sci..

[109]  Hendrik Van Landeghem,et al.  The State of the Art of Nurse Rostering , 2004, J. Sched..

[110]  Edmund K. Burke,et al.  Solving Examination Timetabling Problems through Adaption of Heuristic Orderings , 2004, Ann. Oper. Res..

[111]  Peter Ross,et al.  Hyper-heuristics applied to class and exam timetabling problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[112]  Sanja Petrovic,et al.  A time-predefined local search approach to exam timetabling problems , 2004 .

[113]  Larry Bull,et al.  Applications of Learning Classifier Systems , 2004 .

[114]  Graham Kendall,et al.  Guided Operators for a Hyper-Heuristic Genetic Algorithm , 2003, Australian Conference on Artificial Intelligence.

[115]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[116]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[117]  Peter Ross,et al.  Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics , 2003, GECCO.

[118]  Pierre Hansen,et al.  Variable Neighbourhood Search , 2003 .

[119]  Michael O'Neill,et al.  Grammatical evolution - evolutionary automatic programming in an arbitrary language , 2003, Genetic programming.

[120]  Atsuko Ikegami,et al.  A subproblem-centric model and approach to the nurse scheduling problem , 2003, Math. Program..

[121]  Paolo Toth,et al.  Models, relaxations and exact approaches for the capacitated vehicle routing problem , 2002, Discret. Appl. Math..

[122]  Graham Kendall,et al.  Hyperheuristics: A Robust Optimisation Method Applied to Nurse Scheduling , 2002, PPSN.

[123]  Sanja Petrovic,et al.  Knowledge Discovery in a Hyper-heuristic for Course Timetabling Using Case-Based Reasoning , 2002, PATAT.

[124]  Peter J. Stuckey,et al.  A Hybrid Algorithm for the Examination Timetabling Problem , 2002, PATAT.

[125]  Peter Ross,et al.  Hyper-heuristics: Learning To Combine Simple Heuristics In Bin-packing Problems , 2002, GECCO.

[126]  Hiroshi Imai,et al.  Classification of Various Neighborhood Operations for the Nurse Scheduling Problem , 2000, ISAAC.

[127]  Efthymios Housos,et al.  Hybrid optimization techniques for the workshift and rest assignment of nursing personnel , 2000, Artif. Intell. Medicine.

[128]  Giuseppe F. Italiano,et al.  New Algorithms for Examination Timetabling , 2000, WAE.

[129]  Gilbert Laporte,et al.  Classical and modern heuristics for the vehicle routing problem , 2000 .

[130]  Luca Di Gaspero,et al.  Tabu Search Techniques for Examination Timetabling , 2000, PATAT.

[131]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[132]  Daniele Vigo,et al.  The Three-Dimensional Bin Packing Problem , 2000, Oper. Res..

[133]  Bernd Freisleben,et al.  Fitness Landscapes, Memetic Algorithms, and Greedy Operators for Graph Bipartitioning , 2000, Evolutionary Computation.

[134]  H. Terashima-Marín,et al.  Evolution of Constraint Satisfaction strategies in examination timetabling , 1999 .

[135]  Manuel Laguna,et al.  Tabu Search , 1997 .

[136]  Armin Scholl,et al.  Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem , 1997, Comput. Oper. Res..

[137]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[138]  Gilbert Laporte,et al.  Examination Timetabling: Algorithmic Strategies and Applications , 1994 .

[139]  Terry Jones,et al.  Crossover, Macromutationand, and Population-Based Search , 1995, ICGA.

[140]  Marshall L. Fisher,et al.  Optimal Solution of Vehicle Routing Problems Using Minimum K-Trees , 1994, Oper. Res..

[141]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[142]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[143]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[144]  Marius M. Solomon,et al.  Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints , 1987, Oper. Res..

[145]  Nicos Christofides,et al.  The period routing problem , 1984, Networks.

[146]  J. K. Lenstra,et al.  Complexity of vehicle routing and scheduling problems , 1981, Networks.

[147]  Billy E. Gillett,et al.  A Heuristic Algorithm for the Vehicle-Dispatch Problem , 1974, Oper. Res..

[148]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[149]  Ender Özcan,et al.  A re-characterization of hyper-heuristics , 2018 .

[150]  Libin Hong,et al.  A hyper-heuristic approach to automated generation of mutation operators for evolutionary programming , 2018, Appl. Soft Comput..

[151]  D. Boughaci,et al.  A Hyper-Heuristic method for MAX-SAT , 2014 .

[152]  John H. Drake,et al.  Crossover control in selection hyper-heuristics : case studies using MKP and HyFlex , 2014 .

[153]  G. Kendall A Dynamic Multi-Armed Bandit-Gene Expression Programming Hyper-Heuristic for Combinatorial Optimization Problems , 2014 .

[154]  Graham Kendall,et al.  Monte Carlo hyper-heuristics for examination timetabling , 2012, Ann. Oper. Res..

[155]  Silvia Curteanu,et al.  Multi-objective optimization of a stacked neural network using an evolutionary hyper-heuristic , 2012, Appl. Soft Comput..

[156]  Greet Van den Berghe,et al.  A Hyper-heuristic with Learning Automata for the Traveling Tournament Problem , 2012 .

[157]  David Meignan,et al.  An Evolutionary Programming Hyper-heuristic with Co-evolution for CHeSC’11 , 2011 .

[158]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[159]  Edmund K. Burke,et al.  A Reinforcement Learning - Great-Deluge Hyper-Heuristic for Examination Timetabling , 2010, Int. J. Appl. Metaheuristic Comput..

[160]  Matthew R. Hyde,et al.  A Genetic Programming Hyper-Heuristic Approach for Evolving Two Dimensional Strip Packing Heuristics , 2009 .

[161]  Ender Özcan,et al.  A self-organising hyper-heuristic framework , 2009 .

[162]  Edmund K. Burke,et al.  Adapti ve Selection of Heuristics within a GRASP for Exam Timetabling Problems , 2009 .

[163]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[164]  Nicolas Jozefowiez,et al.  The vehicle routing problem: Latest advances and new challenges , 2007 .

[165]  Rong Qu,et al.  No . NOTTCS-TR-2006-1 Hybridisations within a Graph Based Hyper-heuristic Framework for University Timetabling Problems , 2006 .

[166]  L. D. Whitley,et al.  Complexity Theory and the No Free Lunch Theorem , 2005 .

[167]  Graham Kendall,et al.  An Investigation of a Tabu-Search-Based Hyper-Heuristic for Examination Timetabling , 2005 .

[168]  E. Burke,et al.  Hybrid Graph Heuristics within a Hyper-Heuristic Approach to Exam Timetabling Problems , 2005 .

[169]  Michel Gendreau,et al.  New Heuristics for the Vehicle Routing Problem , 2005 .

[170]  U Aickelin,et al.  Handbook of metaheuristics (International series in operations research and management science) , 2005 .

[171]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[172]  Hishammuddin Asmuni,et al.  Fuzzy Multiple Ordering Criteria for Examination Timetabling , 2004 .

[173]  Edmund K. Burke,et al.  Investigating Ahuja-Orlin''s Large Neighbourhood Search for Examination Timetabling , 2004 .

[174]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[175]  P. Cowling,et al.  CHOICE FUNCTION AND RANDOM HYPERHEURISTICS , 2002 .

[176]  Paolo Toth,et al.  An Overview of Vehicle Routing Problems , 2002, The Vehicle Routing Problem.

[177]  Sanja Petrovic,et al.  Case-Based Reasoning as a Heuristic Selector in a Hyper-Heuristic for Course Timetabling Problems , 2002 .

[178]  Michel Gendreau,et al.  Metaheuristics for the Capacitated VRP , 2002, The Vehicle Routing Problem.

[179]  Patrick Prosser,et al.  Dynamic VRPs: A Study of Scenarios , 1998 .

[180]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[181]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[182]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[183]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[184]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[185]  R. H. Mole,et al.  A Sequential Route-building Algorithm Employing a Generalised Savings Criterion , 1976 .