Genetic Programming-Based Selection of Imputation Methods in Symbolic Regression with Missing Values

[1]  Qi Chen,et al.  A Hybrid GP-KNN Imputation for Symbolic Regression with Missing Values , 2018, Australasian Conference on Artificial Intelligence.

[2]  Randal S. Olson,et al.  TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learning , 2016, AutoML@ICML.

[3]  Ahmet Arslan,et al.  Performance Comparison of Some Imputation Methods Used in Missing Value(s) Analysis: A Simulation Study , 2019, Turkiye Klinikleri Journal of Biostatistics.

[4]  Qi Chen,et al.  Hessian Complexity Measure for Genetic Programming-Based Imputation Predictor Selection in Symbolic Regression with Incomplete Data , 2020, EuroGP.

[5]  Masanori Suganuma,et al.  A genetic programming approach to designing convolutional neural network architectures , 2017, GECCO.

[6]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[7]  Qi Chen,et al.  A Genetic Programming-based Wrapper Imputation Method for Symbolic Regression with Incomplete Data , 2019, 2019 IEEE Symposium Series on Computational Intelligence (SSCI).

[8]  J. Schafer Multiple imputation: a primer , 1999, Statistical methods in medical research.

[9]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[10]  Luís Torgo,et al.  OpenML: networked science in machine learning , 2014, SKDD.

[11]  Tomas Brandejsky,et al.  Model Identification from Incomplete Data Set Describing State Variable Subset Only - The Problem of Optimizing and Predicting Heuristic Incorporation into Evolutionary System , 2013, NOSTRADAMUS.

[12]  T. Stijnen,et al.  Review: a gentle introduction to imputation of missing values. , 2006, Journal of clinical epidemiology.

[13]  Qi Chen,et al.  Genetic Programming for Imputation Predictor Selection and Ranking in Symbolic Regression with High-Dimensional Incomplete Data , 2019, Australasian Conference on Artificial Intelligence.

[14]  Kaitlyn Heidt Comparison of Imputation Methods for Mixed Data Missing at Random , 2019 .

[15]  Qi Chen,et al.  Genetic Programming-Based Simultaneous Feature Selection and Imputation for Symbolic Regression with Incomplete Data , 2019, ACPR.

[16]  Dick den Hertog,et al.  On the Importance of Data Balancing for Symbolic Regression , 2010, IEEE Transactions on Evolutionary Computation.

[17]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..