Combining Dissimilarities in a Hyper Reproducing Kernel Hilbert Space for Complex Human Cancer Prediction
暂无分享,去创建一个
Manuel Martín-Merino | Ángela Blanco | Javier De Las Rivas | J. Rivas | M. Martín-Merino | Ángela Blanco | J De Las Rivas
[1] Nello Cristianini,et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..
[2] Jill P. Mesirov,et al. Subclass Mapping: Identifying Common Subtypes in Independent Disease Data Sets , 2007, PloS one.
[3] Javier De Las Rivas,et al. Combining dissimilarity based classifiers for cancer prediction using gene expression profiles , 2007, BMC Bioinformatics.
[4] Manuel Martín-Merino,et al. Self Organizing Map and Sammon Mapping for Asymmetric Proximities , 2001, ICANN.
[5] Bernhard Schölkopf,et al. Kernel Methods in Computational Biology , 2005 .
[6] Katya Scheinberg,et al. Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..
[7] Todd,et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.
[8] Rafael A Irizarry,et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.
[9] Robert P. W. Duin,et al. A Generalized Kernel Approach to Dissimilarity-based Classification , 2002, J. Mach. Learn. Res..
[10] Sorin Drăghici,et al. Data Analysis Tools for DNA Microarrays , 2003 .
[11] T. Golub,et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. , 2003, Blood.
[12] N. Cristianini,et al. Optimizing Kernel Alignment over Combinations of Kernel , 2002 .
[13] Edward Y. Chang,et al. Formulating distance functions via the kernel trick , 2005, KDD '05.
[14] T. Poggio,et al. Prediction of central nervous system embryonal tumour outcome based on gene expression , 2002, Nature.
[15] Bernhard Schölkopf,et al. A Kernel Approach for Learning from Almost Orthogonal Patterns , 2002, European Conference on Principles of Data Mining and Knowledge Discovery.
[16] Ian B. Jeffery,et al. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data , 2006, BMC Bioinformatics.
[17] T. Poggio,et al. Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[18] N. Cristianini,et al. On Kernel-Target Alignment , 2001, NIPS.
[19] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[20] Alexander J. Smola,et al. Learning with kernels , 1998 .
[21] J. Davis. Bioinformatics and Computational Biology Solutions Using R and Bioconductor , 2007 .
[22] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[23] Koji Tsuda,et al. Support vector classifier with asymetric kernel function , 1999, The European Symposium on Artificial Neural Networks.
[24] Nello Cristianini,et al. Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..
[25] Annette M. Molinaro,et al. Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..
[26] R. Spang,et al. Predicting the clinical status of human breast cancer by using gene expression profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[27] S. Dudoit,et al. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .
[28] Constantin F. Aliferis,et al. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis , 2004, Bioinform..
[29] Alexander J. Smola,et al. Learning the Kernel with Hyperkernels , 2005, J. Mach. Learn. Res..
[30] Michael I. Jordan,et al. Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..