Strength through structure: visualization and local assessment of the trabecular bone structure
暂无分享,去创建一个
Felix Eckstein | Jan S. Bauer | Philippe K. Zysset | Maiko Matsuura | Irina Sidorenko | Eva-Maria Lochmüller | C. Räth | F. Eckstein | P. Zysset | J. Bauer | I. Sidorenko | E. Lochmüller | E. Lochmüller | R. Monetti | D. Müller | C. Räth | Roberto Monetti | M. Matsuura | D. Müller | P. Zysset | J. Bauer | I. Sidorenko | Jan S. Bauer | Felix Eckstein
[1] Krzysztof M. Gorski,et al. Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps , 1998 .
[2] J. Yorke,et al. Dimension of chaotic attractors , 1982 .
[3] Kristel Michielsen,et al. Integral-geometry morphological image analysis , 2001 .
[4] T. M. Link,et al. The 3D-based scaling index algorithm: a new structure measure to analyze trabecular bone architecture in high-resolution MR images in vivo , 2006, Osteoporosis International.
[5] D. Stoyan,et al. Stochastic Geometry and Its Applications , 1989 .
[6] Ernst J. Rummeny,et al. Application of the Minkowski functionals in 3D to high-resolution MR images of trabecular bone: prediction of the biomechanical strength by nonlinear topological measures , 2004, SPIE Medical Imaging.
[7] H. K. Eriksen,et al. Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton , 2004 .
[8] H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .
[9] Christoph Räth,et al. A scaling index analysis of the Wilkinson Microwave Anisotropy Probe three-year data: signatures of non-Gaussianities and asymmetries in the cosmic microwave background , 2007 .
[10] S. Borgani,et al. Minkowski functionals of Abell/ACO clusters , 1997 .
[11] P. Rüegsegger,et al. Direct Three‐Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.
[12] Roberto A. Monetti,et al. Analysis of the topological properties of the proximal femur on a regional scale: evaluation of multi-detector CT-scans for the assessment of biomechanical strength using local Minkowski functionals in 3D , 2006, SPIE Medical Imaging.
[13] Analysing large-scale structure - I. Weighted scaling indices and constrained randomization , 2002, astro-ph/0207140.
[14] M. Halpern,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity , 2003 .
[15] TOR Hildebrand,et al. Quantification of Bone Microarchitecture with the Structure Model Index. , 1997, Computer methods in biomechanics and biomedical engineering.
[16] B. Sathyaprakash,et al. Shapefinders: A New Shape Diagnostic for Large-Scale Structure , 1998, astro-ph/9801053.
[17] P. Grassberger,et al. Characterization of Strange Attractors , 1983 .
[18] S. Majumdar,et al. In Vivo High Resolution MRI of the Calcaneus: Differences in Trabecular Structure in Osteoporosis Patients , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.
[19] Martin Kerscher,et al. Fluctuations in the IRAS 1.2 Jy catalogue , 1997, astro-ph/9704028.
[20] Gregor E. Morfill,et al. Texture detection and texture discrimination with anisotropic scaling indices , 1997 .
[21] A Scaling Index Analysis of the WMAP three year data: Signatures of non-Gaussianities and Asymmetries in the CMB , 2007, astro-ph/0702163.
[22] F. Wehrli,et al. Three‐dimensional nuclear magnetic resonance microimaging of trabecular bone , 1995, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.
[23] L. Moscardini,et al. The effect of primordial non-Gaussianity on the topology of large-scale structure , 2007, 0711.3603.
[24] Ernst J. Rummeny,et al. Analyzing and selecting texture measures for quantifying trabecular bone structures using surrogates , 2003, SPIE Medical Imaging.
[25] Ernst J. Rummeny,et al. Assessing the biomechanical strength of trabecular bone in vitro using 3D anisotropic nonlinear texture measures: the scaling vector method , 2004, SPIE Medical Imaging.
[26] L. Santaló. Integral geometry and geometric probability , 1976 .
[27] Rik Huiskes,et al. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone , 2000, Nature.
[28] G. Joyce,et al. First observation of electrorheological plasmas. , 2008, Physical review letters.
[29] E. Stokstad. Bone Quality Fills Holes in Fracture Risk , 2005, Science.
[30] P. Grassberger,et al. Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors , 1988 .
[31] J. Wolff. Das Gesetz der Transformation der Knochen , 1893 .
[32] B. Sathyaprakash,et al. Disentangling the Cosmic Web. I. Morphology of Isodensity Contours , 1999, astro-ph/9904384.
[33] Minkowski Functionals of SDSS Galaxies I : Analysis of Excursion Sets , 2003, astro-ph/0304455.