jmbReview Trametes villosa Lignin Peroxidase ( TvLiP ) : Genetic and Molecular Characterization

1Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, 44036-900 Feira de Santana, BA, Brazil 2Universidade Estadual de Feira de Santana, Departamento de Tecnologia, 44036-900 Feira de Santana, BA, Brazil 3Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, 45652-000 Ilhéus, BA, Brazil 4Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Genética e Bioquímica, 45652-000 Ilhéus, BA, Brazil 5Universidade Federal do Estado do Rio de Janeiro, Departamento de Tecnologia de Alimentos, 22290-240 Rio de Janeiro, RJ, Brazil 6Universidade Federal de Minas Gerais, Departamento de Microbiologia, 31270-901 Belo Horizonte, MG, Brazil

[1]  Rina D. Koyani,et al.  Solid State Fermentation: Comprehensive Tool for Utilization of Lignocellulosic through Biotechnology , 2015 .

[2]  U. Kües Fungal enzymes for environmental management. , 2015, Current opinion in biotechnology.

[3]  Marília Lordêlo Cardoso Silva,et al.  Production of Manganese Peroxidase by Trametes villosa on Unexpensive Substrate and Its Application in the Removal of Lignin from Agricultural Wastes , 2014 .

[4]  A. Salamov,et al.  Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi , 2014, Proceedings of the National Academy of Sciences.

[5]  Adya P. Singh,et al.  Biotechnological applications of wood-rotting fungi: a review. , 2014 .

[6]  J. Vukojevic,et al.  Potential of Trametes species to degrade lignin , 2013 .

[7]  D. Hibbett,et al.  Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay , 2013, Mycologia.

[8]  M. Sain,et al.  Identification of a potential fungal species by 18S rDNA for ligninases production , 2013, World journal of microbiology & biotechnology.

[9]  B. Henrissat,et al.  Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes , 2013, Biotechnology for Biofuels.

[10]  A. Pawlik,et al.  Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. , 2013, Enzyme and microbial technology.

[11]  Jin-Rong Xu,et al.  Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi , 2013, BMC Genomics.

[12]  Albee Y. Ling,et al.  The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes , 2012, Science.

[13]  K. Hammond-Kosack,et al.  The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis , 2012, PloS one.

[14]  G. Zeng,et al.  Understanding Lignin-Degrading Reactions of Ligninolytic Enzymes: Binding Affinity and Interactional Profile , 2011, PloS one.

[15]  Hafiz M.N. Iqbal,et al.  Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes vericolor , 2011, BioResources.

[16]  R. E. Quiroz-Castañeda,et al.  Evaluation of different lignocellulosic substrates for the production of cellulases and xylanases by the basidiomycete fungi Bjerkandera adusta and Pycnoporus sanguineus , 2011, Biodegradation.

[17]  J. Griffith,et al.  The CAZyome of Phytophthora spp.: A comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora , 2010, BMC Genomics.

[18]  K. Kitamoto,et al.  Identification of csypyrone B1 as the novel product of Aspergillus oryzae type III polyketide synthase CsyB. , 2010, Bioorganic & medicinal chemistry.

[19]  L. Levin,et al.  Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. , 2010, Bioresource technology.

[20]  Kristiina Hildén,et al.  Lignin‐modifying enzymes in filamentous basidiomycetes – ecological, functional and phylogenetic review , 2010, Journal of basic microbiology.

[21]  W. Qin,et al.  Fungal biodegradation and enzymatic modification of lignin. , 2010, International journal of biochemistry and molecular biology.

[22]  Rui M. F. Bezerra,et al.  Modification of wheat straw lignin by solid state fermentation with white-rot fungi. , 2009, Bioresource technology.

[23]  R. Sarnthima,et al.  Extracellular ligninolytic enzymes by Lentinus polychrous Lév. under solid-state fermentation of potential agro-industrial wastes and their effectiveness in decolorization of synthetic dyes , 2009 .

[24]  Dominic W. S. Wong,et al.  Structure and Action Mechanism of Ligninolytic Enzymes , 2009, Applied biochemistry and biotechnology.

[25]  F. J. Ruiz-Dueñas,et al.  Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. , 2009, Journal of experimental botany.

[26]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[27]  R. Silva,et al.  Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos , 2009 .

[28]  J. Arguelles,et al.  Production of laccase and manganese peroxidase by white-rot fungi from sugarcane bagasse in solid bed: Use for dyes decolourisation , 2008, Sugar Tech.

[29]  E. Kachlishvili,et al.  Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes , 2008, Journal of Industrial Microbiology & Biotechnology.

[30]  D. Cullen,et al.  Role of fungal peroxidases in biological ligninolysis. , 2008, Current opinion in plant biology.

[31]  H. Hwang,et al.  Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase , 2008 .

[32]  D. Matheus,et al.  Lignolytic enzymes produced by Trametes villosa ccb176 under different culture conditions , 2008, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[33]  D. Hibbett,et al.  Molecular Evolution and Diversity of Lignin Degrading Heme Peroxidases in the Agaricomycetes , 2008, Journal of Molecular Evolution.

[34]  A. D’Annibale,et al.  An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. , 2008, Organic & biomolecular chemistry.

[35]  P. Hu,et al.  Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens , 2007, Proceedings of the National Academy of Sciences.

[36]  S. Shleev,et al.  Laccase-mediator systems and their applications: A review , 2007, Applied Biochemistry and Microbiology.

[37]  Andrew W. Wilson,et al.  Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). , 2007, Molecular phylogenetics and evolution.

[38]  D. Hibbett,et al.  Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota , 2006 .

[39]  M. Bjerrum,et al.  Kinetic studies on the reaction between Trametes villosa laccase and dioxygen. , 2006, Journal of inorganic biochemistry.

[40]  K. Piontek,et al.  Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. , 2005, Journal of molecular biology.

[41]  C. Loguercio-Leite,et al.  DNA extraction from frozen field- collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods , 2005 .

[42]  C. Cameselle,et al.  Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor , 2003 .

[43]  D. Haltrich,et al.  Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. , 2002, Microbiology.

[44]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[45]  D. Trystram,et al.  Construction of Phylogenetic Trees on Parallel Clusters , 2001, PPAM.

[46]  D. Cullen,et al.  Recent advances on the molecular genetics of ligninolytic fungi. , 1997, Journal of biotechnology.

[47]  T. Johansson,et al.  A cluster of genes encoding major isozymes of lignin peroxidase and manganese peroxidase from the white-rot fungus Trametes versicolor. , 1996, Gene.

[48]  M. Rey,et al.  Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa , 1996, Applied and environmental microbiology.

[49]  H. Wariishi,et al.  Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. , 1992, The Journal of biological chemistry.

[50]  R. Farrell,et al.  Enzymatic "combustion": the microbial degradation of lignin. , 1987, Annual review of microbiology.

[51]  M. Tien,et al.  Lignin-degrading enzyme fromPhanerochaete chrysosporium , 1984 .

[52]  M. Kuwahara,et al.  Separation and characterization of two extracelluar H2O2‐dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium , 1984 .

[53]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .