Frobenius norm minimization and probing for preconditioning

In this paper we introduce a new method for defining preconditioners for the iterative solution of a system of linear equations. By generalizing the class of modified preconditioners (e.g. MILU), the interface probing, and the class of preconditioners related to the Frobenius norm minimization (e.g. FSAI, SPAI) we develop a toolbox for computing preconditioners that are improved relative to a given small probing subspace. Furthermore, by this MSPAI (modified SPAI) probing approach we can improve any given preconditioner with respect to this probing subspace. All the computations are embarrassingly parallel. Additionally, for symmetric linear system we introduce new techniques for symmetrizing preconditioners. Many numerical examples, e.g. from PDE applications such as domain decomposition and Stokes problem, show that these new preconditioners often lead to faster convergence and smaller condition numbers.

[1]  O. Axelsson A generalized SSOR method , 1972 .

[2]  I. Gustafsson A class of first order factorization methods , 1978 .

[3]  O. Axelsson,et al.  On the eigenvalue distribution of a class of preconditioning methods , 1986 .

[4]  Owe Axelsson,et al.  Block preconditioning and domain decomposition methods. II , 1988 .

[5]  A. Griewank,et al.  Approximate inverse preconditionings for sparse linear systems , 1992 .

[6]  Tony F. Chan,et al.  The Interface Probing Technique in Domain Decomposition , 1992, SIAM J. Matrix Anal. Appl..

[7]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[8]  Igor E. Kaporin,et al.  New convergence results and preconditioning strategies for the conjugate gradient method , 1994, Numer. Linear Algebra Appl..

[9]  A. Bruaset A survey of preconditioned iterative methods , 1995 .

[10]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[11]  Marcus J. Grote,et al.  A Block Version of the SPAI Preconditioner , 1999, PP.

[12]  L. Giraud,et al.  Schur complement preconditioners for anisotropic problems , 1999 .

[13]  A. A. Nikishin,et al.  Factorized sparse approximate inverse preconditionings. III. Iterative construction of preconditioners , 2000 .

[14]  Edmond Chow,et al.  A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[15]  Thomas Huckle Factorized Sparse Approximate Inverses for Preconditioning , 2004, The Journal of Supercomputing.

[16]  M. Ng Iterative Methods for Toeplitz Systems , 2004 .

[17]  Michael K. Ng Iterative Methods for Toeplitz Systems (Numerical Mathematics and Scientific Computation) , 2004 .

[18]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[19]  Andrew J. Wathen,et al.  Sparse Approximate Inverses and Target Matrices , 2005, SIAM J. Sci. Comput..

[20]  E. Sturler,et al.  Probing methods for saddle-point problems. , 2006 .

[21]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..