Major and Trace Element Analysis of Silicate Rocks by XRF and Laser Ablation ICP-MS Using Lithium Borate Fused Glasses: Matrix effects, Instrument Response and Results for International Reference Materials

Major and trace element compositions of fifteen silicate rock reference materials have been determined by a combined XRF and laser ablation ICP-MS (LA-ICP-MS) technique on glasses prepared by fusing the sample with a lithium borate flux (sample:flux = 1:3). Advantages of this technique include the ability to measure major and trace element abundances on a single sample using a quick and simple preparation that attacks resistant phases such as zircon without the need for acid dissolution. The method is suitable for a wide variety of bulk compositions including mafic, intermediate and silicic rocks. Abundance-normalized mass response patterns (the ratio of signal intensity to element concentration) of the LA-ICP-MS analyses vary systematically with major element composition, demonstrating the presence of a matrix effect that cannot be compensated by normalisation to a single internal standard element. Increasing the sampling distance between the ICP-MS cone and the torch reduces the magnitude of this effect, suggesting that a mechanism related to residence time of ablated particles in the plasma may be at least partially responsible for the observed variations in mass response patterns. When using a matrix-matched calibration, agreement of the LA-ICP-MS results with published reference values or those obtained by solution ICP-MS is 10% relative. Analytical precision based on replicate analyses is typically 5% RSD. Procedural detection limits that include contributions from gas background and flux are 0.01-0.1 μg g-1 for the heavy mass trace elements (Rb-U). Major element analyses by XRF show excellent agreement with results obtained using a conventional heavy element absorbing flux. High quality major and trace element data for silicate rocks can be achieved by a combined XRF and LA-ICP-MS analysis of Li2B4O7/LiBO2 fused glasses provided an appropriate matrix-matched calibration is adopted. Les compositions en elements majeurs et en trace de quinze materiaux silicates de reference ont ete analyses en combinant XRF et ICP-MS couplea un laser (LA-ICP-MS) sur des verres prepares par fusion des echantillons avec un fondant au borate de lithium (rapport echantillon/fondant = 1:3). Les avantages de cette technique portent, entre autres, sur la possibilite de mesurer elements majeurs et en trace sur un meme echantillon, en utilisant une preparation simple et rapide qui attaque les phases resistantes telles que les zircons, sans necessiter une mise en solution par des acides. La methode est tres adaptee a une grande variete de compositions globales, couvrant les roches basiques, intermediaires et acides. La courbe de reponse en masse, apres normalisation (le rapport entre l'intensite du signal et la concentration de l'element) de l'ICP-MS couplea un laser varie systematiquement avec la composition en elements majeurs de l'echantillon, montrant bien qu'il existe un effet de matrice, lequel ne peut pas etre compense par une normalisation a un seul standard interne. Une augmentation de la distance entre le cone de l'ICP-MS et la torche reduit l'amplitude de cet effet, suggerant en cela qu'un mecanisme lie au temps de residence des particules ablatees dans le plasma doit etre responsable, au moins partiellement, des variations observees. Quand on utilise une calibration avec des standards de meme matrice, l'accord entre valeurs mesurees par LA-ICP-MS et valeurs de references (ou valeurs obtenues par analyse ICP-MS en solution) est de 10% en relatif. La precision analytique basee sur des analyses dupliquees est typiquement 5% RSD. Les limites de detection typiques de cette procedure, qui recouvrent la contribution du bruit de fond et celle du fondant sont de 0.01 a 0.1 μg g-1 pour les elements de masse entre Rb et U. Les analyses des elements majeurs par XRF montrent un excellent accord avec les resultats obtenus en utilisant un fondant conventionnel. En conclusion, des donnees de tres bonne qualite, pour les elements majeurs et en trace peuvent donc etre obtenues sur les roches silicatees en combinant l'analyse par XRF et LA-ICP-MS sur des verres avec les fondants Li2B4O7/LiBO2, si une calibration avec des standards de meme matrice est adoptee.

[1]  M. Norman,et al.  Major-and trace-element analysis of sulfide ores by Laser-ablation ICP-MS, solution ICP-MS and XRF: new data on international reference materials , 2003 .

[2]  R. Pedersen,et al.  U–Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques , 2002 .

[3]  D. Günther,et al.  Capabilities of a homogenized 266 nm Nd:YAG laser ablation system for LA-ICP-MS , 2002 .

[4]  P. McGoldrick,et al.  An Evaluation of Methods for the Chemical Decomposition of Geological Materials for Trace Element Determination using ICP-MS , 2001 .

[5]  Detlef Günther,et al.  Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles — implications for LA-ICP-MS , 2001 .

[6]  B. Fegley,et al.  The Solar System's Earliest Chemistry: Systematics of Refractory Inclusions , 2000 .

[7]  J. Becker,et al.  A new strategy of solution calibration in laser ablation inductively coupled plasma mass spectrometry for multielement trace analysis of geological samples , 2000, Fresenius' journal of analytical chemistry.

[8]  P. Hoppe,et al.  The Preparation and Preliminary Characterisation of Eight Geological MPI‐DING Reference Glasses for In‐Situ Microanalysis , 2000 .

[9]  G. Jenner,et al.  Determination of Zr and Hf in a Flux-Free Fusion of Whole Rock Samples using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) with Isotope Dilution Calibration , 1999 .

[10]  J. Becker,et al.  Determination of trace elements in geological samples by laser ablation inductively coupled plasma mass spectrometry , 1999 .

[11]  T. Nakano,et al.  Determination of Zirconium, Niobium, Hafnium and Tantalum at ng g‐1 Levels in Geological Materials by Direct Nebulisation of Sample HF Solution into FI‐ICP‐MS , 1999 .

[12]  A. Townsend,et al.  Determination of Scandium, Yttrium and Rare Earth Elements in Rocks by High Resolution Inductively Coupled Plasma‐Mass Spectrometry , 1999 .

[13]  D. Günther,et al.  Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier , 1999 .

[14]  A. Grimstvedt,et al.  Application of a double-focusing magnetic sector inductively coupled plasma mass spectrometer with laser ablation for the bulk analysis of rare earth elements in rocks fused with Li2B4O7 , 1998 .

[15]  D. Koppenaal,et al.  Laser ablation inductively coupled plasma mass spectrometry , 1998 .

[16]  J. B. Cross,et al.  More investigations into elemental fractionation resulting from laser ablation–inductively coupled plasma–mass spectrometry on glass samples , 1998 .

[17]  C. Münker Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: source constraints and application of refined ICPMS techniques , 1998 .

[18]  W. McDonough,et al.  The composition of peridotites and their minerals: a laser-ablation ICP–MS study , 1998 .

[19]  H. Longerich,et al.  Application of a frequency quintupled Nd:YAG source (λ=213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals , 1998 .

[20]  W. Griffin,et al.  Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data , 1998 .

[21]  W. Perkins,et al.  The Development of Laser Ablation ICP‐MS and Calibration Strategies: Examples from the Analysis of Trace Elements in Volcanic Glass Shards and Sulfide Minerals , 1997 .

[22]  Y. Lahaye,et al.  Ultraviolet Laser Sampling and High Resolution Inductively Coupled Plasma‐Mass Spectrometry of NIST and BCR‐2G Glass Reference Materials , 1997 .

[23]  M. Hamester,et al.  Preliminary Investigation into the Use of a High Resolution Inductively Coupled Plasma‐Mass Spectrometer with Laser Ablation for Bulk Analysis of Geological Materials Fused with Li2B4O7 , 1997 .

[24]  S. Eggins,et al.  A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation , 1997 .

[25]  W. Griffin,et al.  QUANTITATIVE ANALYSIS OF TRACE ELEMENTS IN GEOLOGICAL MATERIALS BY LASER ABLATION ICPMS: INSTRUMENTAL OPERATING CONDITIONS AND CALIBRATION VALUES OF NIST GLASSES , 1996 .

[26]  D. Günther,et al.  Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation , 1996 .

[27]  S. Chenery,et al.  Time-resolved signals from particles injected into the inductively coupled plasma , 1996 .

[28]  P. Goodall,et al.  Laser ablation inductively coupled plasma atomic emission spectrometry of a uranium-zirconium alloy: ablation properties and analytical behavior , 1995 .

[29]  G. Gauthier,et al.  Applications of LAM-ICP-MS analysis to minerals , 1995 .

[30]  G. Gauthier,et al.  A critical look at quantitative laser-ablation ICP-MS analysis of natural and synthetic glasses , 1995 .

[31]  H. Longerich,et al.  The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM- ICP-MS) in the Earth sciences , 1995 .

[32]  I. Nicholls,et al.  Laser ablation-inductively coupled plasma-mass spectrometry: an investigation of elemental responses and matrix effects in the analysis of geostandard materials , 1995 .

[33]  J. Watson,et al.  1994 REPORT ON WHIN SILL DOLERITE WS‐E FROM ENGLAND AND PITSCURRIE MICROGABBRO PM‐S FROM SCOTLAND: ASSESSMENT BY ONE HUNDRED AND FOUR INTERNATIONAL LABORATORIES , 1994 .

[34]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[35]  K. Jarvis,et al.  Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples , 1993 .

[36]  J. Fedorowich,et al.  A rapid method for REE and trace-element analysis using laser sampling ICP-MS on direct fusion whole-rock glasses , 1993 .

[37]  W. Perkins,et al.  Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates , 1993 .

[38]  H. Longerich,et al.  The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals , 1992 .

[39]  I. Jarvis,et al.  An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry , 1992 .

[40]  K. Norrish,et al.  XRS analysis of sulphides by fusion methods , 1990 .

[41]  M. Norman,et al.  COMPARISON OF MAJOR AND TRACE-ELEMENT ANALYSES BY ICP, XRF, INAA AND ID METHODS , 1989 .

[42]  B. Fegley,et al.  The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula , 1986 .

[43]  Roy W. Brown A sample fusion technique for whole rock analysis with the electron microprobe , 1977 .

[44]  I. Nicholls A direct fusion method of preparing silicate rock glasses for energy-dispersive electron microprobe analysis , 1974 .

[45]  E. Gasparrini,et al.  Rapid rock analysis by electron probe , 1970 .

[46]  K Norrish,et al.  An accurate X-ray spectrographic method for the analysis of a wide range of geological samples , 1969 .