CONDITIONAL FDH EFFICIENCY TO ASSESS PERFORMANCE FACTORS FOR BRAZILIAN AGRICULTURE

In this article we assess the effect of market imperfections and income inequality on rural production efficiency. The analysis is carried out using the notion of stochastic conditional efficiency computed in terms of free disposal hull (FDH) efficiencymeasurements. Free disposal hull and conditional FDH are output oriented with variable returns to scale. They are evaluated for rural production at the county level, considering the rank of rural gross income as the output and the ranks of land expenses, labor expenses, and expenses on other technological factors as inputs. The conditional frontier is dependent on income inequality and other indicators related to market imperfections. The econometric approach is based on fractional regression models and the generalized method of moments (GMM). Overall, the market imperfection variables act to reduce performance, and income dispersion is positively associated with technical efficiency.

[1]  Timothy G. Conley GMM estimation with cross sectional dependence , 1999 .

[2]  David J. Groggel,et al.  Practical Nonparametric Statistics , 2000, Technometrics.

[3]  Mirian Oliveira de Souza,et al.  UMA METODOLOGIA ALTERNATIVA PARA CÁLCULO DOS ÍNDICES DE IMPACTOS SOCIAIS E AMBIENTAIS DAS TECNOLOGIAS DA EMBRAPA , 2013 .

[4]  C. C. A. Buschinelli,et al.  An Environmental Impact Assessment System for Agricultural Research and Development II: Institutional Learning Experience at Embrapa , 2010 .

[5]  Geraldo da Silva e Souza,et al.  Desigualdade nos campos na ótica do censo agropecuário 2006. , 2013 .

[6]  Geraldo da Silva e Souza,et al.  Pequenos estabelecimentos também enriquecem? Pedras e tropeços , 2015 .

[7]  Assessing the determinants of rural income dispersion in Brazil. , 2015 .

[8]  Léopold Simar,et al.  Explaining inefficiency in nonparametric production models: the state of the art , 2014, Ann. Oper. Res..

[9]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[10]  Geraldo da Silva e Souza,et al.  Management of agricultural research centers in Brazil: A DEA application using a dynamic GMM approach , 2015, Eur. J. Oper. Res..

[11]  P. W. Wilson,et al.  Estimation and inference in two-stage, semi-parametric models of production processes , 2007 .

[12]  Rodolfo Hoffmann,et al.  A contribuição das atividades agrícolas e não-agrícolas para a desigualdade de renda no Brasil rural , 2008 .

[13]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[14]  Esmeralda A. Ramalho,et al.  Fractional regression models for second stage DEA efficiency analyses , 2010 .

[15]  G. D. S. E. Souza,et al.  Uma Metodologia Alternativa para Mensuração de Pressão Sobre o Mercado de Câmbio , 2004 .

[16]  J. MacKinnon,et al.  Estimation and inference in econometrics , 1994 .

[17]  G. Rodrigues,et al.  A SYSTEM OF INTEGRATED INDICATORS FOR SOCIO-ENVIRONMENTAL ASSESSMENT AND ECO-CERTIFICATION IN AGRICULTURE - AMBITEC- AGRO , 2006 .

[18]  Carlos Roberto Ferreira,et al.  As aposentadorias e pensões e a concentração dos rendimentos domiciliares per capita no Brasil e na sua área rural: 1981 a 2003 , 2007 .

[19]  J. Silva,et al.  Pobreza e distribuição de renda em áreas rurais: uma abordagem de inferência , 2004 .

[20]  Léopold Simar,et al.  How to measure the impact of environmental factors in a nonparametric production model , 2012, Eur. J. Oper. Res..

[21]  David A. Ratkowsky,et al.  Nonlinear regression modeling : a unified practical approach , 1984 .

[22]  Rodolfo Hoffmann,et al.  Educação, concentração fundiária e desigualdade de rendimentos no meio rural brasileiro , 2009 .