Higher order time integration formula with application on Burgers’ equation
暂无分享,去创建一个
[1] M. M. Chawla,et al. New L-stable modified trapezoidal formulas for the numerical integration of Y1=f(x, y) , 1997, Int. J. Comput. Math..
[2] E. Süli,et al. Numerical Solution of Partial Differential Equations , 2014 .
[3] M. K. Kadalbajoo,et al. A numerical method based on Crank-Nicolson scheme for Burgers' equation , 2006, Appl. Math. Comput..
[4] A. R. Gourlay,et al. The Extrapolation of First Order Methods for Parabolic Partial Differential Equations, II , 1978 .
[5] E. Hopf. The partial differential equation ut + uux = μxx , 1950 .
[6] G. Dahlquist. A special stability problem for linear multistep methods , 1963 .
[7] Mustafa Inç. New L-stable method for numerical solutions of ordinary differential equations , 2007, Appl. Math. Comput..
[8] Amit K. Verma,et al. L-stable Simpson's 3/8 rule and Burgers' equation , 2011, Appl. Math. Comput..
[9] W. Ramirez. Chapter 8 – SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS , 1997 .
[10] J. Cole. On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .
[11] M. M. Chawla,et al. Stabilized fourth order extended methods for the numerical solution of odes , 1994 .
[12] J. Crank,et al. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] Tien D. Bui. Some A-Stable and L-Stable Methods for the Numerical Integration of Stiff Ordinary Differential Equations , 1979, JACM.
[14] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[15] J. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .
[16] David J. Evans,et al. A new L-stable Simpson-type rule for the diffusion equation , 2005, Int. J. Comput. Math..