Sensitivity analysis for chemical process optimization

Abstract A sensitivity analysis methodology based on continuation techniques is applied to chemical engineering processes. The method is based on the trace of the optimal solution path of a process model under multiple model parameter variations of finite magnitude. The first-order stationarity conditions form a system of parameterized nonlinear equations. The solution of the equation set for different values of the parameters is obtained using continuation methods (PITCON). The behavior of the optimal solution path is studied around singular points. Simple tests are used to detect singularities due to violation of the strict complementarity, linear independence constraint qualification or second-order optimality conditions. The example cases involve single and multiple unit models with equation sets of moderate to large size. The method can handle active constraint set changes and can determine the range of model parameter variations in a given direction for which the model is feasible. It can be used to determine the most sensitive unit in a plant for a given disturbance and calculate multiple solutions to the stationarity conditions for the same parameter values.

[1]  Mark A. Kramer,et al.  Sensitivity analysis of systems of differential and algebraic equations , 1985 .

[2]  W. Rheinboldt Numerical analysis of parametrized nonlinear equations , 1986 .

[3]  Yu.M. Volin,et al.  Sensitivity calculation methods for complex chemical systems—1: algorithmization , 1981 .

[4]  J. W. Kovach Heterogenous azeotropic distillaion-homotopy-continuation methods , 1987 .

[5]  Theodore J. Williams,et al.  A generalized chemical processing model for the investigation of computer control , 1960, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[6]  Steven A. Johnson,et al.  Mapped continuation methods for computing all solutions to general systems of nonlinear equations , 1990 .

[7]  Mark A. Kramer,et al.  Parametric sensitivity analysis of complex process flowsheets using sequential modular simulation , 1987 .

[8]  R. Fletcher Practical Methods of Optimization , 1988 .

[9]  Susumu Shindoh,et al.  Manifold Structure of the Karush-Kuhn-Tucker Stationary Solution Set with Two Parameters , 1993, SIAM J. Optim..

[10]  J. Ilavský,et al.  Global simulation of countercurrent separation processes via one-parameter imbedding techniques , 1981 .

[11]  H. Jongen,et al.  On parametric nonlinear programming , 1991 .

[12]  Werner C. Rheinboldt,et al.  Algorithm 596: a program for a locally parameterized , 1983, TOMS.

[13]  Aubrey B. Poore,et al.  Numerical Continuation and Singularity Detection Methods for Parametric Nonlinear Programming , 1993, SIAM J. Optim..

[14]  Alexander Shapiro,et al.  Second order sensitivity analysis and asymptotic theory of parametrized nonlinear programs , 1985, Math. Program..

[15]  T. L. Wayburn,et al.  Homotopy continuation methods for computer-aided process design☆ , 1987 .

[16]  J. Seinfeld,et al.  Automatic sensitivity analysis of kinetic mechanisms , 1979 .

[17]  W. E. Stewart,et al.  Sensitivity analysis of initial value problems with mixed odes and algebraic equations , 1985 .

[18]  David D. Brengel,et al.  NONLINEAR ANALYSIS IN PROCESS DESIGN , 1991 .

[19]  Lorenz T. Biegler,et al.  Flowsheet optimization and optimal sensitivity analysis using analytical derivatives , 1994 .

[20]  C. D. Holland,et al.  Fundamentals of Multicomponent Distillation , 1997 .

[21]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[22]  Yu.M. Volin,et al.  Sensitivity calculation methods for complex chemical systems—2: comparison , 1981 .

[23]  R. Schainker,et al.  On the statistical sensitivity analysis of models for chemical kinetics , 1975 .

[24]  Ali H. Dogru,et al.  Sensitivity analysis of partial differential equations with application to reaction and diffusion processes , 1979 .

[25]  M. Koda,et al.  Sensitivity analysis of distributed parameter systems , 1982 .

[26]  M. Lockett Distillation Tray Fundamentals , 1986 .

[27]  Thomas E. Marlin,et al.  Model accuracy for economic optimizing controllers : the bias update case , 1994 .

[28]  Andrew N. Hrymak,et al.  Nonlinear optimization of a hydrocracker fractionation plant , 1993 .

[29]  Herschel Rabitz,et al.  The Green’s function method of sensitivity analysis in chemical kinetics , 1978 .

[30]  H. Keller Lectures on Numerical Methods in Bifurcation Problems , 1988 .

[31]  Hubertus Th. Jongen,et al.  Critical sets in parametric optimization , 1986, Math. Program..

[32]  K. Shuler,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[33]  Jan Koninckx On-Line Optimization of Chemical Plants Using Steady State Models. , 1988 .

[34]  Lyle H. Ungar,et al.  CONTROLLER VERIFICATION USING QUALITATIVE REASONING , 1994 .

[35]  C. A. Tiahrt,et al.  Bifurcation problems in nonlinear parametric programming , 1987, Math. Program..

[36]  Lorenz T. Biegler,et al.  Optimal flowsheet sensitivity in a sensitivity oriented environment , 1993 .

[37]  John W. Hearne,et al.  Sensitivity analysis of parameter combinations , 1985 .

[38]  E. Wacholder,et al.  Application of the Adjoint Sensitivity Method to the Analysis of a Supersonic Ejector , 1984 .

[39]  C. A. Tiahrt,et al.  A bifurcation analysis of the nonlinear parametric programming problem , 1990, Math. Program..

[40]  A. Mayne Parametric Optimization: Singularities, Pathfollowing and Jumps , 1990 .

[41]  M. Kojima,et al.  Continuous deformation of nonlinear programs , 1984 .

[42]  James G. Uber,et al.  DESIGN OPTIMIZATION WITH SENSITIVITY CONSTRAINTS , 1990 .

[43]  Werner C. Rheinboldt,et al.  A locally parameterized continuation process , 1983, TOMS.

[44]  V. Klema LINPACK user's guide , 1980 .

[45]  R. T. Haftka,et al.  Tracing the Efficient Curve for Multi-objective Control-Structure Optimization , 1991 .

[46]  L. Biegler,et al.  A reduced hessian strategy for sensitivity analysis of optimal flowsheets , 1987 .

[47]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .