Tunneling in Systems of Coupled Dopant-Atoms in Silicon Nano-devices

[1]  D. Moraru,et al.  Effect of selective doping on the spatial dispersion of donor-induced quantum dots in Si nanoscale transistors , 2015 .

[2]  D. Moraru,et al.  Comparative study of donor-induced quantum dots in Si nano-channels by single-electron transport characterization and Kelvin probe force microscopy , 2015 .

[3]  Xin Tong,et al.  Advances in MoS2-Based Field Effect Transistors (FETs) , 2015, Nano-Micro Letters.

[4]  D. Moraru,et al.  Transport spectroscopy of coupled donors in silicon nano-transistors , 2014, Scientific Reports.

[5]  D. Moraru,et al.  The impacts of electronic state hybridization on the binding energy of single phosphorus donor electrons in extremely downscaled silicon nanostructures , 2014 .

[6]  Xiaoming Li,et al.  Low-temperature electron mobility in heavily n-doped junctionless nanowire transistor , 2013 .

[7]  D. Moraru,et al.  Experimental and Ab Initio Study of Donor State Deepening in Nanoscale SOI-MOSFETs , 2013 .

[8]  Hiroshi Mizuta,et al.  Electron-tunneling operation of single-donor-atom transistors at elevated temperatures , 2013 .

[9]  M. Vinet,et al.  A two-atom electron pump , 2012, Nature Communications.

[10]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[11]  Giorgio Ferrari,et al.  Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor. , 2012, Nature nanotechnology.

[12]  Yuan Taur,et al.  Review and Critique of Analytic Models of MOSFET Short-Channel Effects in Subthreshold , 2012, IEEE Transactions on Electron Devices.

[13]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[14]  A. Fujiwara,et al.  Donor-based single electron pumps with tunable donor binding energy. , 2012, Nano letters.

[15]  J. Verduijn Silicon Quantum Electronics , 2012 .

[16]  Effect of electron injection into phosphorus donors in silicon-on-insulator channel observed by Kelvin probe force microscopy , 2011 .

[17]  D. Moraru,et al.  Single-Electron Charging in Phosphorus Donors in Silicon Observed by Low-Temperature Kelvin Probe Force Microscope , 2011 .

[18]  Yasuo Takahashi,et al.  Room-temperature charge stability modulated by quantum effects in a nanoscale silicon island. , 2011, Nano letters.

[19]  M. Fanciulli,et al.  Adiabatic charge control in a single donor atom transistor , 2010, 1006.5406.

[20]  Yasuo Takahashi,et al.  Si-based ultrasmall multiswitching single-electron transistor operating at room-temperature , 2010 .

[21]  D. Moraru,et al.  Single-electron transport through single dopants in a dopant-rich environment. , 2010, Physical review letters.

[22]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[23]  X Jehl,et al.  Single-donor ionization energies in a nanoscale CMOS channel. , 2010, Nature nanotechnology.

[24]  Observation of discrete dopant potential and its application to Si single-electron devices , 2010 .

[25]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[26]  D. Moraru,et al.  Single-Electron Transfer by Inter-Dopant Coupling Tuning in Doped Nanowire Silicon-on-Insulator Field-Effect Transistors , 2009 .

[27]  Walter Riess,et al.  Donor deactivation in silicon nanostructures. , 2009, Nature nanotechnology.

[28]  D. Moraru,et al.  Observation of individual dopants in a thin silicon layer by low temperature Kelvin Probe Force Microscope , 2008 .

[29]  Insoo Woo,et al.  Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET , 2008 .

[30]  W. Magnus,et al.  Dielectric mismatch effect on coupled shallow impurity states in a semiconductor nanowire , 2008 .

[31]  D. Moraru,et al.  Quantized electron transfer through random multiple tunnel junctions in phosphorus-doped silicon nanowires , 2007 .

[32]  Yasuo Takahashi,et al.  Conductance modulation by individual acceptors in Si nanoscale field-effect transistors , 2007 .

[33]  Christophe Delerue,et al.  Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement , 2007 .

[34]  M Jurczak,et al.  Transport spectroscopy of a single dopant in a gated silicon nanowire. , 2006, Physical review letters.

[35]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[36]  Masumi Saitoh,et al.  Extension of Coulomb blockade region by quantum confinement in the ultrasmall silicon dot in a single-hole transistor at room temperature , 2004 .

[37]  J. Bird Electron transport in quantum dots , 2003 .

[38]  Andrew R. Brown,et al.  The Use of Quantum Potentials for Confinement and Tunnelling in Semiconductor Devices , 2002 .

[39]  Yuan Taur,et al.  CMOS design near the limit of scaling , 2002 .

[40]  R. Blick,et al.  Single-electron tunneling in highly doped silicon nanowires in a dual-gate configuration , 2001 .

[41]  M. Kastner,et al.  Evidence for activated conduction in a single electron transistor , 2001 .

[42]  Doped silicon single electron transistors with single island characteristics , 2000 .

[43]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[44]  R. A. Smith,et al.  Gate controlled Coulomb blockade effects in the conduction of a silicon quantum wire , 1997 .

[45]  Yasuo Takahashi,et al.  Novel Fabrication Technique for a Si Single-Electron Transistor and Its High Temperature Operation , 1995 .

[46]  Yasuo Takahashi,et al.  Fabrication technique for Si single-electron transistor operating at room temperature , 1995 .

[47]  Collective Coulomb blockade in an array of quantum dots: A Mott-Hubbard approach. , 1993, Physical review letters.

[48]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[49]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  Nevill Mott,et al.  The theory of impurity conduction , 1961 .